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Introduction

Introduction

With LHC’s RUN II higher precision of theoretical predictions is expected.

1-loop NLO established in the last decade as the new standard
for high-multiplicity processes.  BlackHat, Gosam, OpenLoops, NJet ...

2-loop NNLO is the current frontier
(although: N3LO for inclusive Higgs production done [Anastasiou et al.]).
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m 2 — 3 processes still open

ano Lo Presti




Introduction

Introduction

Among NNLO bottle-necks:
two-loop scattering amplitudes — purely virtual contribution.

At one-loop Feynman diagrams can be decomposed
into a small set of master integrals (MlIs), all of which are known.

At two-loop much larger set of MIs — extends to higher multiplicities.
Many remain to be calculated. ~ Results up to now: 4-point functions.
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Introduction

Among NNLO bottle-necks:
two-loop scattering amplitudes — purely virtual contribution.

At one-loop Feynman diagrams can be decomposed
into a small set of master integrals (MlIs), all of which are known.

At two-loop much larger set of MIs — extends to higher multiplicities.
Many remain to be calculated. ~ Results up to now: 4-point functions.

Taking derivatives of the integr-als/-ands delivers a very powerful tool
- to reduce the amplitude to Mls (Laporta algorithm),

- to evaluate the integrals (Differential Equation method).
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DE method

Review of Differential-Equations method

Integration by part identities

dPk; 1 — 0
/H iTtD/2 aku Dal D |

relate different integrals = we can reduce them to MIs.
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DE method

Review of Differential-Equations method

Integration by part identities

/H dPk; 1 — 0
inP/2 ak“ DR

relate different integrals = we can reduce them to MIs.

Derivaties w.r.t external kinematic invariants

dPk; dPk; 9 1
op? /H jP/2 D“1 /H i P/2 2p E)p“ D' ...Dy

yield differential equations for MlIs. [Gehrmann, Remiddi]

Codes used: Fire [Smirnov], Reduze [von Manteuffel],
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DE method

Review of Differential-Equations method

MIs basis is not unique.  Suitable choice considerably simplifies diff. eqs.:
o = A(x,e)f — 9 = eA(x)f canbe integrated order by order in €.

[J. Henn]
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DE method

Review of Differential-Equations method

MIs basis is not unique.  Suitable choice considerably simplifies diff. eqs.:
o = A(x,e)f — 9 = eA(x)f canbe integrated order by order in €.

[J. Henn]
Further simplification:

of = e) ékxkf —  df(%,e) = ed
%

ZAk IOg Olg (56))‘| ‘?(}a 8)
k

X

where the list of functions {a.,... ay,} is called alphabet.
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DE method

Review of Differential-Equations method

MIs basis is not unique.  Suitable choice considerably simplifies diff. eqs.:
o = A(x,e)f — 9 = eA(x)f canbe integrated order by order in €.

[J. Henn]
Further simplification:

of = ezxék f(x,€) = ed
k

ZAk IOg Olg (56))‘| ‘?(}a 8)
k

where the list of functions {a.,... ay,} is called alphabet.

Solution (symbolic): f(& €) = Pexp [8 Ny dA] S (o,€)
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DE method

Review of Differential-Equations method

Solutions expressed in terms of multiple polylogarithms
[Remiddi, Vermaseren; Gehrmann, Remiddi; Goncharov]

dt
r—a

X
G(al,az,...,an;x):/o G(ay,...,an;t),

. 1
with G(x) =1, G(0) =0 and G(0,;x) = — log"x.
n.

Simple example:  G(d,;x) = log" (1 — %) with d, = {a,....a}

Ifa; € {1,—1,0} — Harmonic Polylogarithms.
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DE method

2-loop five-point planar integrals

del deZ D;a9 D;Oalo D;lall
Giay,any = / (inD/2)2 D{fl thlz Dgs DZ4 Dgs Dgs Dg7 Dgs
D, = -k,
Dy = —(ki+p)?,
Dy = —(ki+pi+p)?,
Dy = —(ki+pi+p2+p3),
Ds = -k,
De = —(ka+pi+p2+p3),
D; = —(ka+pi+pr+ps+pa),
Dy = —(k—k),
Dy = —(ki+p1+p2+p3+ps), )
Dy = —(k +I71)27 S = (Pi +Pj)
D = —(ktpitp)? X = {512,523,534,545,551 }




DE method

2-loop five-point planar integrals

61 MlIs
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DE method

2-loop five-point planar integrals

61 MIs , 10 new
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2-loop 5-pt integrals

2-loop five-point planar integrals

Alphabet of 24 letter

{ s12 , Si2—s34 , Si2+s23 , S;2—934—845 , ... ,
2 2
(823 —S51)\/Z + 512853 — 8§34 553 + 534 545523 — 2512551 523
2 2
+534 551523 + S45545523 + S1255) — S4555] + 534545523 }

A is the Gram determinant.
With a suitably chosen parametrization, A — perfect square

S22 = 21,

$3 = L,

s38 = (/)@ —1)+nu+25@—25),
sas = ziz(z—zs),

ssi = z1z3(l—zs)

obtained by using Momentum Twistor variables [Hodges 0905.1473]




Boundary conditions

Boundary conditions

Boundary values can be obtained from physical conditions,
in kinematic limits with singular diff. eq. but regular integrals.

No singularities in the Euclidean region s;;41 < 0.

Un-physical singularities
appear in the limit

— 12
S45 —> S12 + 8523 545

and they need to cancel.

— no need to compute any additional integrals.
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Boundary conditions

Boundary conditions

A = 0 defines hypersurface where divergencies need to cancel.
The symmetric point X, = {—1,—1,—1,—1,—-1}

is connected to the A = 0 surface by
f(& €) = Pexp [ /dA] F(Go,€)

path vy = {— a y) ,—1,—1,—1,—1} — reduced alphabet .

Adriano Lo Presti University of Ziirich

Five-point two-loop master integrals in QCD



Applications

Applications

- We have applied our integrals to the all-plus amplitude.
In particular we have checked the pole structure

@) Ly (s \°, 1) 0
A (11,2731 4T 5Ty = — 72( R ) +— | Ay (17,2%,37,47 57) + 0(?)
€7 3\ —Sii+1 3e

Finite part: ongoing numerical comparisons against [Badger, Frellesvig, Zhang].




Applications

Applications

- We have applied our integrals to the all-plus amplitude.
In particular we have checked the pole structure

A(z)(1+ 2+ 3+ 4+ 5+) — i i /“112? E+£ A(])(1+ 2+ 3+ 4+ 5+) + 0(80)
5 ’ ’ ’ kl 82 4 7Si‘i+l 38 5 I I ’ ’

Finite part: ongoing numerical comparisons against [Badger, Frellesvig, Zhang].

- Check done: infrared structure and finite part of A\’ = 4 sYM ampl.

5 2 Le
¥ () Ao

siyi+1

WG
logMs = I;la { (Le)?  4Le +f*

Formula conjectured by [Bern, Dixon, Smornov (BDS)].
Follows from dual-conformal symmetry [Drummond,Henn,Korchemsky,Sokatchev].
Proven numerically [Cachazo,Spradlin, Volovich; Bern,Czakon,Kosower,Roiban,Smirnov]
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Summary and Outlook

m [ have presented the computation of five-point two-loop MIs (planar).

m Results obtained using the Differential-Equation method,
with MIs basis that makes the diff. eq. system canonical.

m Boundary conditions obtained by requiring the cancellation
of spurious singularities in diff. eqs. — No further integration required.
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Summary and Outlook

m [ have presented the computation of five-point two-loop MIs (planar).

m Results obtained using the Differential-Equation method,
with MIs basis that makes the diff. eq. system canonical.

m Boundary conditions obtained by requiring the cancellation
of spurious singularities in diff. eqs. — No further integration required.

m Analytic continuation outside Euclidean region (— physical region).

m Non-planar integrals: in progress.
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