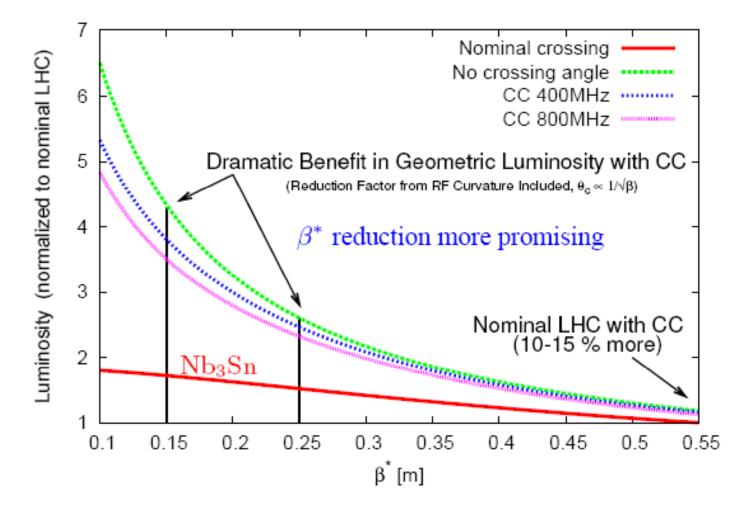


Prospects of Compact Crab Cavities for LHC

Peter McIntosh

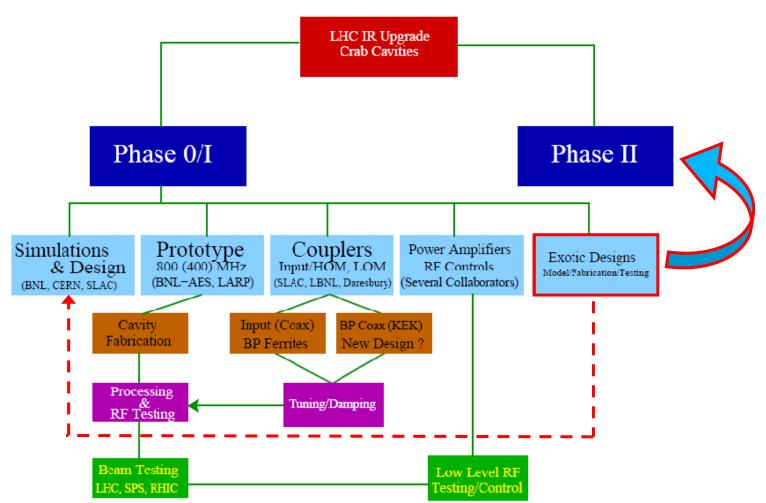
LHC-CC Workshop, CERN 21st August 2008

Accelerator Science and Technology Centre



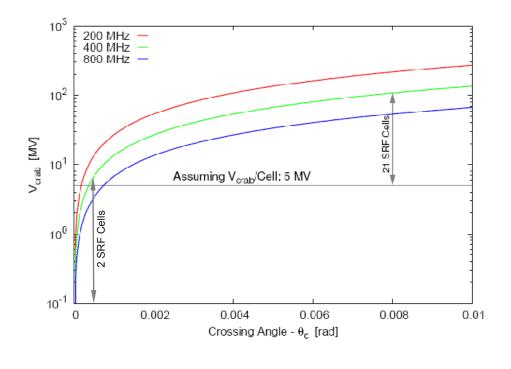
Overview

- \cdot CC Advantages for LHC
- · LHC Constraints
- Local vs Global
- · Compact CC R&D Underway
- Conclusions



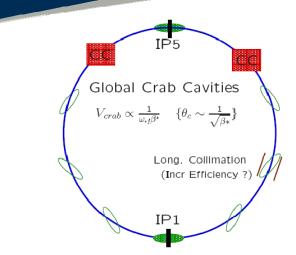
CC Advantages for LHC

LHC CC R&D Plan



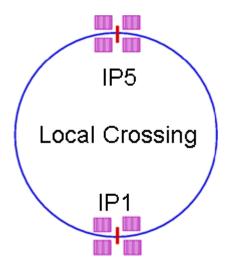
From LHC-CC08 BNL, 25-26 Feb 2008

Accelerator Science and Technology Centre


LHC CC Voltage Requirement

$$V_{crab} = \frac{cE_0 \tan \left(\theta_C / 2\right)}{\omega_{RF} \sqrt{\beta_{crab} \beta^*}} \left\{ \sigma_z \ll \lambda_{RF} \right\}$$

- For LHC:
 - Bunch length = 7.55 cm
 - Crossing angle $\approx 0.3 0.5$ mrad
- RF voltages required:
 - 3 7 MV (deflecting)
- At 800 MHz:
 - 1 module of the BNL/SLAC elliptical cavities (2-cell Cavity)
- At 400 MHz:
 - 2 modules of the various compact CC designs
- Longitudinal Space ~ 5 m
- A flat beam option will give an extra degree of freedom for voltage delivered.



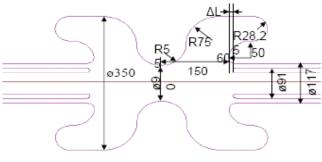
- Small crossing angle (~0.5 mrad):
- Global crab scheme is ideal choice for prototype Phase-I:
 - Test feasibility of crab crossing in hadron colliders,
 - Address all RF and beam dynamic issues,
 - Small orbit excursion and tune shifts,
 - Compatible with nominal and upgrade options to recover the geometric luminosity loss,
 - Collimation optimisation!
 - These cavities are feasible using available technology and the gradient requirements are within reach of current technology.

Local vs Global

- Local crab crossing preferable (Phase-II):
 - Independent control at IPs,
 - Avoid collimation/impedance issues.
- The only local crossing scheme feasible with current technology requires VV crossing (see R. Calaga's talk).
- Need compact cavities to fit in the IR region of the ring.
- Lower frequency hopefully!

Compact CC Constraints

- Two key LHC constraints
 - Transverse beam-line separation (19 25 cm)
 - \cdot Bunch length = 7.55 cm, 800 MHz ok (400 MHz preferred!)
- Local crab crossing scheme preferred to avoid problems with collimation & impedance issues.
- Parallel R&D for compact CC's along with elliptical cavity development.
- Find best substitute for elliptical cavities among the several ideas.
- Copper and/or Niobium prototype to test SRF features.

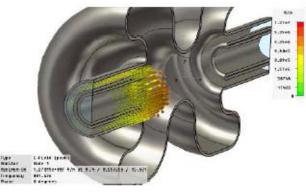

Compact Cavity R&D Underwav

- FNAL mushroom cavity (N Solyak)
- BNL offset TM_{010} cavity (R Calaga)
- SLAC spoke cavity (Z Li)
- · JLab rod cavity (H Wang)
- \cdot SLAC half wave resonator (Z Li)
- · CI figure-8 cavity (G Burt)

FNAL Mushroom Cavity

•

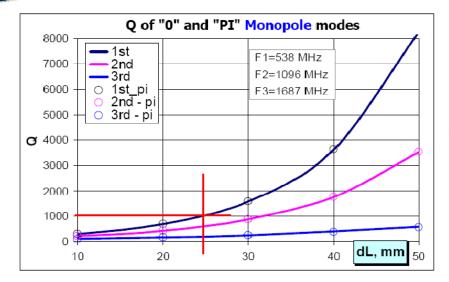
dimensions are in mm

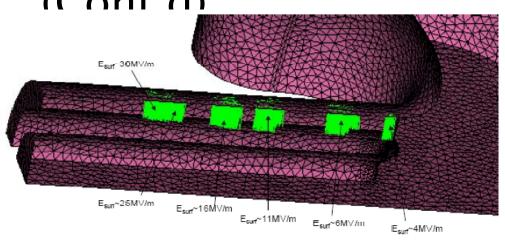

Monopole modes

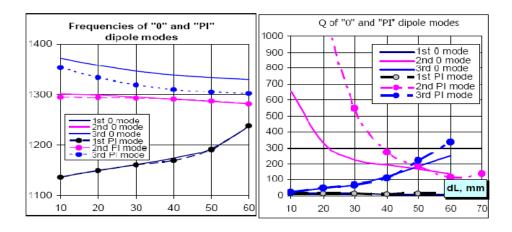
Freq MHz	FF*(R/Q) Ohm	Q
520.6	20	440
520.7	73	420
1087.2 1087.2	2.1 6.8	330 350

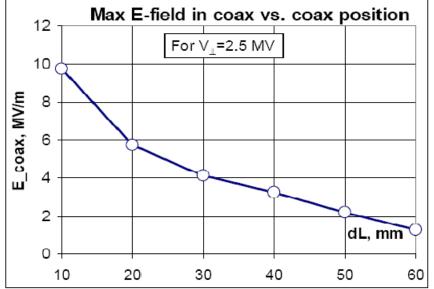
Dipole modes

Freq	FF*(R/Q)	Q
MHz	Ohm	
800	26.4	~107
~900	0.17	~1000
1144.6	0.01	61
1144.9+	0.6	60
1285.5	1.3	509
1291.4+	1.4	150
1302	0.05	18.8
1309+	0.22	18.4
	MHz 800 ~900 1144.6 1144.9+ 1285.5 1291.4+ 1302	MHz Ohm 800 26.4 ~900 0.17 1144.6 0.01 1144.9+ 0.6 1285.5 1.3 1291.4+ 1.4 1302 0.05

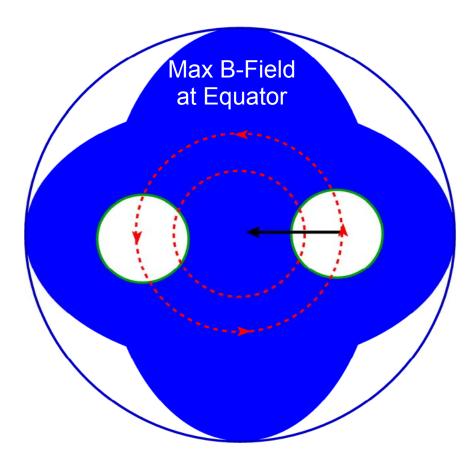

- Coaxial coupler penetration adjusted for optimised damping.
- Aperture increased to 117 mm diameter.
- Reduced E-fields in coaxial line, avoid multipactor.




Target Q_{ext} < 1000 for all inactive modes.



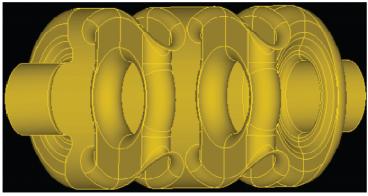
FNAL Mushroom Cavity



Accelerator science and Technology Centre

BNL TM₀₁₀ Cavity (SRF)

- TM_{010} is the lowest mode in pillbox cavity with largest R/Q.
- Transverse space becomes a nonissue even for 400 MHz.
- HOM damping becomes trivial:
 No LOM to damp!
- Smaller peak surface fields compared to TM_{110} .
- Large transverse offset will increase coupling to beam with HOMs, need to evaluate impedance effects.
- Multipacting & non-zero beam loading needs evaluating to see if this design is attractive.



SLAC Spoke Cavity

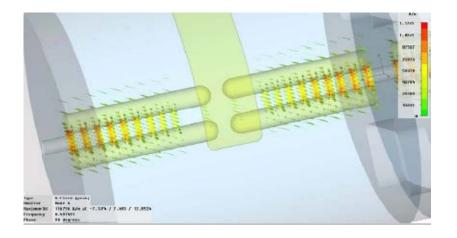
SP

spoke-cell

Cavity radius: 150 mm

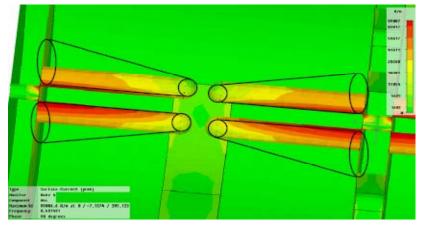
spoke with end-cap

- 0.3 m diameter
- Minimum iris radius of 60 mm needed, for effective cell-to-cell coupling.


Ί	ModelD	Frequency	RoQT(ohm/cavity)
I	0	7.91E+08	2.2
I	1	8.18E+08	121.4
I	2	1.03E+09	9.6
I	3	1.13E+09	2.9
I	4	1.20E+09	10.6

 Damping optimisation with input coupler required.

JLab Rod Cavity (NC)



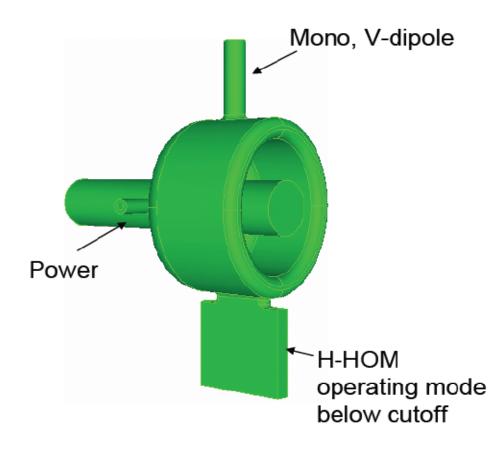
- 2-rod separator cavity operating on CEBAF.
- Q_{cu} is only ~5000 (structure wise), the stainless steel cylinder only takes less than 5% of total loss.
- Each cavity is:
 - 499 MHz,
 - 2-cell,
 - ~λ long
 - ~0.3 m diameter,
 - can produce 400kV deflecting voltage with 1.5kW input RF power.
- The maximum surface magnetic field at the rod ends is ~14.3 mT.
- Water cooling needed on the rods.
- If Nb used for this type of cavity, the V_{\perp} is \approx KEKB CC.
- Microphoniasceanterfabricationnology Centre

JLab Rod Cavity (SRF)

- There are both magnetic and electric fields providing deflecting kick, $E_{\perp} \approx B_{\perp}$.
- The cavity tuner is in low field region. No field enhancement there.
- As rod separation increases, the B_x and E_y fields drop quickly.

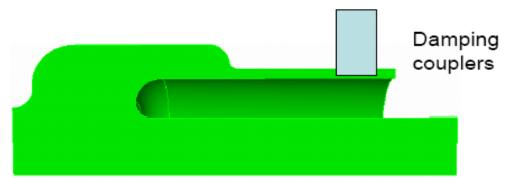
- · Use " π " mode for separating three beams in CEBAF.
- No LOM damping required since the deflecting mode is the fundamental mode.
- Can a SRF version be made to work?
- Need to reduce the surface magnetic field at the rod ends.
- Need high B/E field near the beam path.
- Using cone shape electrodes can certainly reduce rod vibration and microphonics.
- Since there is a low loss on the cylinder can:
 - could make cavity cylinder in low RRR Nb, with rods in high RRR Nb?

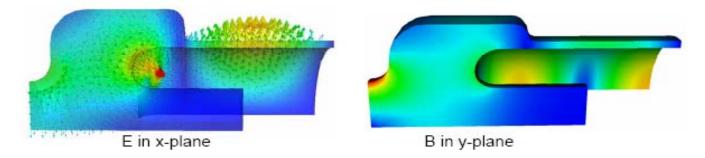
E

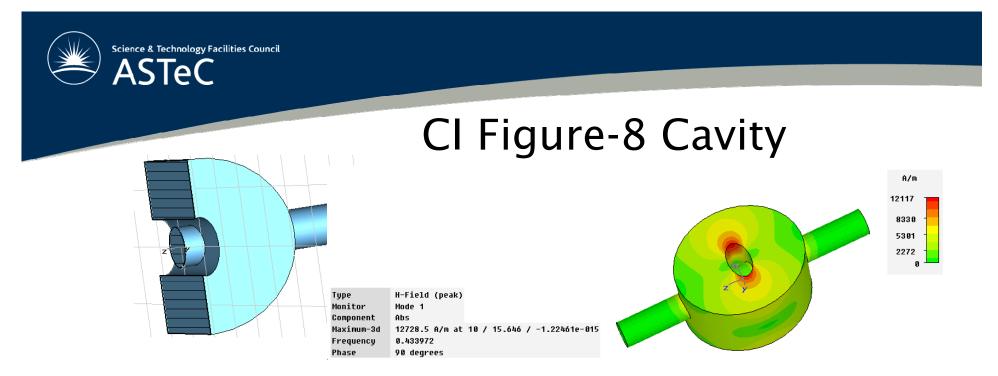

В

SLAC Half Wave Cavity

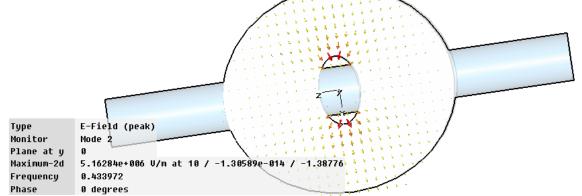
- 400 MHz operating frequency.
- Crabbing voltage doubles c.f. 800 MHz.
- Single gap per cavity.
- Requiring 3-4 cavities per beam for small crossing angles ($V_{\perp} =$ 1.25 MV).
- Multipactor studies needed and damping optimisations verified.

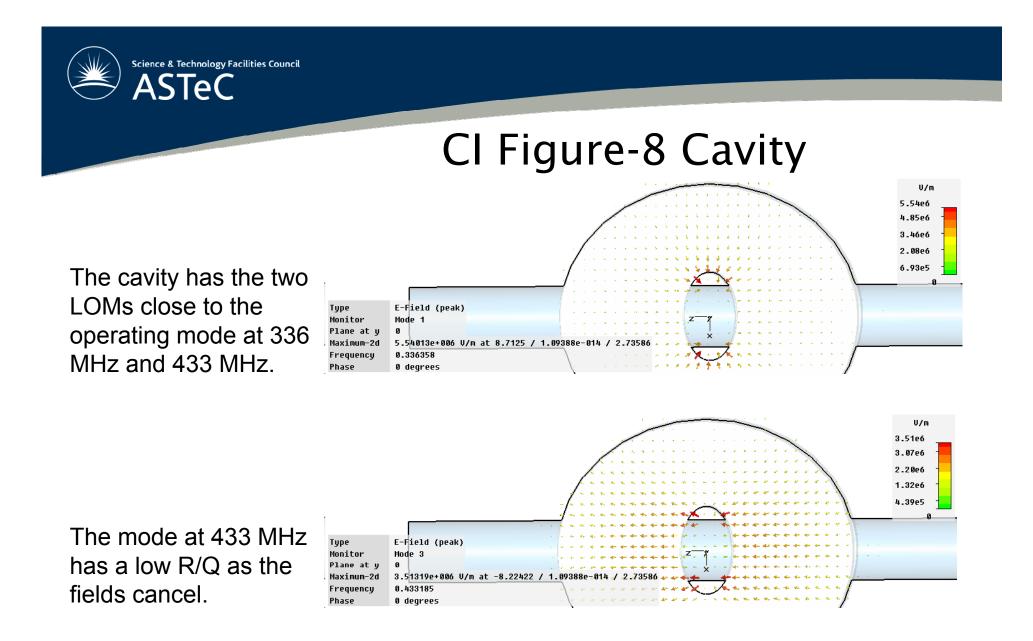

SLAC Half Wave Cavity


	Туре	Qext	F (MHz)
	Operating		400.00
	hq	181.9	577.40
	h d2	165.6	746.92
ŀ	h d+s	53.3	779.88
	hq	131.6	928.02
	ho	24.4	989.84
	h d-TE	36383.3	1011.76
	h d-TE	3957.2	1021.78
	hs	1957.1	1103.91
	hs	170.6	1106.62
	mono	122.3	242.08
	v d	30.4	374.20
	v m+q	15.1	560.48
	v m+d	334.7	590.56
	v d2	25.7	706.99
	v d-q	25.0	783.93
	v	32.2	910.03
	v	273.3	940.80
	v d-s	19.8	992.43
	vo	547.4	996.94
	v d-TE	193467.5	1013.85
1	VS	66.6	1107.69
-			


SLAC Coaxial Input Coupler

- Position of inner conductor of coaxial beampipe adjusted to tune cavity frequency
- Coax-coax or coax-waveguide damping for LOM/SOM/HOM




- Transverse dimension much smaller than regular cavity (< 170mm)
- R/Q and surface fields are being optimized

A Figure-8 cavity allows a very compact cavity size (0.25 - 0.3 m radius @ 400 MHz). Further optimisation will lead to a better field profile.

Peak magnetic fields are 150 mT at V_{\perp} = 5 MV.

Coupler optimisations ongoing.

SRF fabrication process to be determined.

Conclusions

- Luminosity improvements with CCs clear ... even at nominal β^* parameters.
- Substantial increases predicted for lower β^* .
- Lower frequency CC preferred for LHC.
- Space constraints for local crossing make lower frequency solution more difficult.
- Many compact cavity designs being pursued.
- Cavity optimisations, mode damping and multipactor studies ongoing.
- Very promising that a viable solution can be achieved.
- Need coordinated effort to focus R&D for compact CC design.