Optics and Collimation Studies

Yi-Peng Sun, Rogelio Tomás, Frank Zimmermann, Rama Calaga, Thomas Weiler, Javier Barranco and Ralph Assmann

AB/ABP, CERN

CARE-HHH mini-workshop "LHC Crab-Cavity Validation", CERN, 21 August 2008

Aknowledge: Daniel Schulte

Contents

- Test scenario with a single global crab cavity
- Nominal LHC optics
 - Optics
 - Dynamic aperture and orbit
 - Luminosity scan
 - Preliminary collimation studies
- LHC upgrade optics (lowbetamax)
 - Optics, Dynamic aperture
 - Luminosity scan
 - Preliminary collimation studies
- Summary

Yi-Peng SUN et al. Optics and Collimation Studies – p.2/1

Minimal test scenario: 1 CC

• A single global crab cavity at IR4 to benefit IP5

Yi-Peng SUN et al. Opt

Luminosity

- Curves: analytical formulae; Dots: GUINEA-PIG
- Good agreement
- 5 percent gain at IP5, 5 percent loss at IP1, with

Yi-Peng

Parameters (Nominal)

$$V = \frac{c \cdot E \cdot tan(\frac{\theta}{2})}{\omega \cdot \sqrt{\beta^* \cdot \beta_{crab}}} \cdot \left| \frac{2\sin(\pi Q)}{\cos(\Delta \varphi - \pi Q)} \right|$$

	s [m]	β_x [m]	β_y [m]	Phase x	Phase y
IP1	0	0.55	0.55	0	0
CC	9968	208	174	24.382	21.838
IP5	13329	0.55	0.55	32.047	29.609

- The betatron tune of LHC is (64.31, 59.32)
- The 800-MHz crab cavity voltage is calculated to be 9.3 MV
- ●800 m -> 4.7 MV

Optics (Nominal)

- $\beta_{x,CC} = 208 \text{ m}$
- Under investigation: Increase $\beta_{x,CC}$ to 800m

Yi-Peng SUN et al. Optics and Collimation Studies – p.6/18

Bunch shape at IP5 (Nominal)

- 800-MHz crab cavity and linear kick crab cavity RF slope case ($\sigma_z = 75.5mm$)
- Zero transverse and longitudinal offset, and $2.5\sigma_p$ energy offset

Yi-Peng SUN et al. Optics and Collimation Studies – p.7/18

Dynamic aperture (Nominal)

- Two error seeds
- Momentum offset 0.00027, 100,000 turns
- 2 to 2.5 σ degradation

and

Z-dependent Closed orbit (Nominal)

Crab cavity replaced by a corrector in the sequence

Yi-Peng SUN et al. Optics and Collimation Studies – p.9/18

Luminosity scan (Nominal)

- •Only beam 1 is crabbed •Peak luminosity at $\frac{3\theta_c}{4}$
- Measurement resolution 0.01 (Courtesy Simon

White) https://edms.cern.ch/file/347396/1.1/LHC-B-ES-0007-10-00.pdf

Yi-Peng SUN et al. Optics and Collimation Studies – p.10/18

Loss map (1

Loss map for Nominal LHC at IR7 (top energy, $\beta_{IP1,5}^* = 0.55m$), without crab cavity and with horizontal halo

Yi-Peng **SUN**

Loss map (2)

- Loss map for Nominal LHC (top energy, $\beta_{IP1,5}^* = 0.55m$), with crab cavity and horizontal halo
- Preliminary

Loss map (3)

- Loss map for Nominal LHC at IR7 (top energy, $\beta_{IP1,5}^* = 0.55m$), with crab cavity and horizontal halo
- Preliminary

Optics (Upgrade)

	s [m]	β_x [m]	β_y [m]	Phase x	Phase y
IP1	0	0.25	0.25	0	0
CC	10028	113	250	24.557	22.379
IP5	13329	0.25	0.25	32.253	29.736

- •30 m downstream of IP4
- •25.7 MV -> adjust optics
- •800 m -> 9 MV

Yi-Peng SUN et al. Optics and Collimation Studies – p.14/18

Dynamic aperture (Upgrade)

- Two error seeds
- Momentum offset 0.00027, 100,000 turns
- 2 to 4 σ degradation

Luminosity scan (Upgrade)

•Only beam 1 is crabbed •Peak luminosity also at $\frac{3\theta_c}{4}$

Yi-Peng SUN et al. Optics and Collimation Studies – p.16/18

LHC nominal with larger Crab angle

- •Loss map for Nominal LHC at IR7 (top energy, $\beta_{IP1,5}^* = 0.55m$), with crab cavity and horizontal halo
- •Increase crossing angle from $285\mu rad$ to $500\mu rad$, to mimic conditions expected for upgrade optics
- Work in progress

Summary

- CC performance can be validated with one CC in the LHC nominal (luminosity, lifetime, ...)
- LHC optics need adjustments (increase β_{cc} , optimize phase...)
- Luminosity gain 5% (12%) for nominal LHC, with one (two) global CCs
- Luminosity gain 14% (43%) for LHC upgrade, with one (two) global CCs
- Dynamic aperture OK
- Collimation (OK?)