

WP 15.5 - IRRAD and GIF⁺⁺ Facilities Infrastructure Upgrade

Nicolas Bourgeois, Maurice Glaser, Blerina Gkotse, Roberto Guida, Pedro Lima, Michael Moll, **Federico Ravotti**

CERN PH/DT, Irradiation Facilities Team

Contents

- New CERN Irradiation Facilities
 - □ IRRAD
 - ☐ GIF++
- Review of activities related to IRRAD/GIF⁺⁺ upgrade within Task 15.5
- Description of sub-tasks under CERN responsibility

New CERN Irradiation Facilities

GIF Facility Layout**

GIF⁺⁺ Aerial View

IRRAD Proton Facility

New IRRAD Facility

EA-IRRAD Aerial View

Task 15.5 in AIDA-2020

The main aim of this task is the **upgrade of four key irradiation facilities** that provide very different types of radiation fields and are **part of the TA programme** (see WP11). **New requirements arising mainly from the HL-LHC project need to be fulfilled.** These include a rising number of irradiation tests, unprecedented radiation levels and the use of newly developed detector types and components with special requirements, (...)

- □ CERN Gamma Irradiation Facility (GIF⁺⁺)
 - Extension of the gas system: more parallel users, further distribution panels, mixers and IR analysis systems (D15.10)

- New online dose-rate monitor and studies on scintillator detectors (D15.11)
 - → see talk from Institute for Nuclear Research and Nuclear Energy (INRNE)
- Extension of the cosmic ray tracker on the side walls (D15.11)
- Demonstrator for an augmented reality event display system (D15.11)
 - → see talk from Istituto Nazionale Fisica Nucleare (INFN)

GIF⁺⁺ Gas System Upgrade

□ Upgrade Plan:

- Additional 11 panels for mixture distribution
- Upgrade of control rack to handle more units: mixers, analysis, re-circulation systems, etc.
- Additional IR analysis rack for second mixer using flammable gas

Task 15.5 in AIDA-2020

CERN IRRAD Proton Facility

- Improve the infrastructure and user friendliness of this facility
 - Dedicated area to store/handle activated materials (D15.6)
 - Sample and user management software system (D15.6)
 - High-granularity & fast Beam Profile Monitor (D15.7)
 - Development/test of sample holders for extremely-high proton fluence (D15.7)
- Online database on EU irradiation facilities of interest for the HEP (D15.6)
- Position resolved fluence measurement system for proton beam (D15.6)
 - → see talk from Vilnius University (VU)
- Thermal box (LN₂ cooled) for high-flux irradiations from RT to -40°C for CERN (D15.7) and Birmingham (D15.8)
 - → see talk from the University of Sheffield (USFD)

IRRAD Storage & Handling Area

Sample & User Management System 😂

■ Motivation

- Increased number of irradiation systems
- Renewing the existing tool (15y old)
 - up-to-date IT platform
 - increased data capacity
 - new RP standards/procedures at CERN (TREC)

☐ Preliminary Specifications

- Trace each sample/dosimeter
- Store relevant samples material data
- Record irradiation "history" data
- Serve as tool for planning the access to the irradiation area (beam OFF)
- Handle radioactive storage inventory

• ...

High-Granularity & Fast BPM

■ Beam Profile Monitors

- Metal-foil detectors
- Specifically developed for high-intensity beams (> 10¹¹ /burst)
- Current version is optimized for "slow-extracted" beam

☐ New requirements

- Development of new patterns for special beam conditions
- Qualification as a "small-area" particle counter
- Qualification with
 "fast-extracted " beam
 - → improve readout chain ?

Standard pixelated pattern

Sample Holders / Online DB

Paperboard

☐ Sample holders for proton irradiation

- Irradiation of small sensors (Si detectors) in IRRAD
- Replace "paperboard" holders at $\Phi > 10^{17} \text{ p/cm}^2$
- Evaluate new materials
 - Increased radiation hardness
 - Low activation (ALARA)
 - High availability, low cost, etc.

■ Online database of irradiation facilities for HEP

- Merge existing compilations
- One unique CERN portal

The following list contains irradiation facilities made available to members of the RD50 collaboration:

- <u>BNL</u> (Gamma 1.17 and 1.33 MeV)
- CERN (24 GeV/c protons, 1 MeV neutrons)
- NCSR "Demokritos" (Gamma, protons, neutrons)
- Paul Scherrer Institut (300 MeV/c pions)

& PIF (Protons 5 to 235 MeV)

- Université catholique de Louvain (Neutrons 1 to 70 MeV, Protons 10 to 75 MeV, Heavy Ions)
- University of Karlsruhe (25 MeV protons)
- · University of Ljubljana (Neutrons)
- Université de Montréal (Protons up to 11 MeV, ions up to 5.5 MeV/charge)
- University of New Mexico (Gamma, Neutrons)

Protons (added August 2011)

- University of Padua (27 MeV Protons, 58 MeV Lithium ions, 102 MeV Carbon ions, heavier ions)
- Uniwersytet Warszawski (Heavy ions from 22 to 190 MeV)
- Uppsala universitet (Protons 500 keV to 10 MeV, ions 1 to 50 MeV)

49.5 x 49.5 x 1 mm3 Paperboard 49.5 x 49.5 x 1 mm3 with hole 8 x 8 mm2 Paperboard One side covered by Self-adhesive label and crepe paper Paperboard Both sides covered by Self-adhesive label and crepe paper 5×5mi Protons

Figure 1.: Packaging of small samples for irradiation.

www.cern.ch/rd50