INFN-MIlano (65 nm CMOS)

Valentino Liberali

Department of Physics, Università degli Studi di Milano, and INFN Via Celoria, 16 — 20133 Milano — Italy

valentino.liberali@unimi.it

AIDA-2020 Kick-Off Meeting, June 4, 2015

Introduction

2 Radiation Hardening Approach

3 DICE SRAM

4 D2RA (Double-Rail Redundant Approach) Logic

5 Conclusion

INFN-Milano design team: Valentino Liberali, Alberto Stabile, Seyedruhollah Shojaii (chip design); Mauro Citterio, Alessandro Andreani, Fabio Manca (PCB and chip assembling); Alessandra Camplani (FPGA firmware and radiation tests)

Since 2010, INFN-Milano in involved in the design of the Associative Memory chip for the Fast TracKer (FTK) project in ATLAS, using TSMC 65 nm CMOS technology

The Associative Memory chip (AMchip) for FTK

Several versions of the AMchip:

	Vers.	Design	Tech.	Area	Patterns	Package
	1	Full custom	700 nm		128	QFP
	2	FPGA	350 nm		128	QFP
	3	Std cells	180 nm	100 mm ²	5 k	QFP
	4	Std cells $+$	65 nm	14 mm ²	8 k	QFP
		Full custom				
	mini-5	Std cells +	65 nm	4 mm ²	በናレ	
		Full custom			0,3 K	יועט
	5	+ SERDES		12 mm ²	3 k	BGA
		IP blocks				
		Std cells +				
	6	Full custom	65 nm	160 mm ²	128 k	BGA
		+ SERDES				
		IP blocks				

blue = under design

AMchip06

Last version: **AMchip06** 168 mm², 421 M transistors Floorplan:

T airaira sa sa sa sa	
in all and the second s	nan an

Expertise on Digital Design

Design of large IC's with Cadence Encounter Mixed approach (full-custom, standard cells, IP blocks) Use of timing analysis tools (Tempus) and *IR* drop analysis tools (Voltus)

Example: static IR drop for AMchip06 obtained from Voltus

Within RD53/CHIPIX65:

Digital IP blocks designed in 65 nm CMOS technology (TSMC) using RHBD (Radiation Hardening By Design) techniques.

REDUNDANCY technique has been used for:

- DICE SRAM
 - $\bullet\,$ Array of 256 \times 256 cells designed with three different layouts
 - Prototypes available
 - Test board designed
 - Test firmware under development
 - Radiation test planned in July
- D2RA logic
 - New logic family based on redundancy: each signal is propagated on two wires (bit and inverted bit)
 - Cells designed
 - Test chip under design; MPW submitted in May

DICE (Dual Interlocked CEII) SRAM: schematic

T. Calin, M. Nicolaidis, and R. Velazco, "Upset hardened memory design for submicron CMOS technology,", *IEEE Trans. Nucl. Sci.*, vol. 43, pp. 2874-2878, Dec. 1996.

DICE (Dual Interlocked CEII) SRAM: layout

Simple layout

Minimum transistor size: W = 200 nm, L = 60 nm

The cell has been designed in three different versions:

- "simple" layout
- with guard rings around transistors
- with both guard rings and interleaving

Interleaved layout

1st test chip: CHIPIX-SRAM-1

Layout:

3 256 \times 256 SRAM arrays; SERDES; MOS transistors

DICE Single Event Effect simulation

The area affected by a single particle is much larger than a single node!

DICE SEE simulation results

Total Dose simulation

D2RA: Double-Rail Redundant Approach

Redundant logic which processes both the bit and the inverted bit (01) and (10): valid data (00) and (11): invalid data (Single Event Transient)

V. Ciriani, L. Frontini, V. Liberali, S. Shojaii, A. Stabile, and G. Trucco, "Radiation-tolerant standard cell synthesis using double-rail redundant approach," in *Proc. of Int. Conf. on Electronics, Circuits and Systems (ICECS)*, Sept. 2014, http://dx.doi.org/10.1109/ICECS.2014.7050063 Combinational logic gates:

- AND / NAND
- OR / NOR (identical to AND / NAND with swapped inputs)
- XOR / XNOR (two identical "half-cells")
- MUX
- NOT (redundant inverter for single-ended signals)

Sequential logic gates:

- Edge-triggered delay flip-flop (D-FF)
- Clock edge detector

D2RA: Logic Constraints

Fully CMOS logic \longrightarrow inverting logic gates

Correct points:

input valid data must give (1, 0) or (0, 1) at the outputs

Faulty points: Invalid data are represented by don't cares (-), which can be either (0, 0) or (1, 1)

Gravity points: 0000 and 1111 at the inputs must give (1, 1) and (0, 0) at the outputs, respectively

V. Liberali (UniMI + INFN)

Synthesis of a 2-input D2RA AND-NAND

- For both gravity points find the square covers that include neighborhood
- Remaining don't care are filled with ones
- Find minimum covers

NAND - Y output

Schematic of a 2-input D2RA AND-NAND

Layout approach for Standard Cells

• To reduce loss of transconductance at 10 MGy, transistors width is not minimum:

$$W_{
m pmos} = 1.5 \, \mu {
m m}$$

 $W_{
m nmos} = 0.5 \, \mu {
m m}$

- Fixed cell height
- Power supply and ground nets at top and bottom of cells

D2RA AND / NAND layout

SET effect mitigation

When radiation hits a circuit, the generated charge can affect several nodes causing SETs.

The two parts of a D2RA cell must be placed at a minimum distance of $5\,\mu\text{m}$:

2nd test chip: CHIPIX-D2RA-2

Layout:

AND/NAND and XOR/XNOR trees; shift register; ring oscillator all designed with D2RA cells

Conclusion

- DICE SRAM available for test
- Simulation results show good immunity to both SEE and TID
- D2RA: new rad-hard logic family
- Logic cells design:
 - Combinational cells
 - Sequential cells
- Test chip designed and submitted

Future activities:

- Laboratory characterization and radiation test of prototypes
- Improvement of models for radiation simulation at circuit level
- $\bullet\,$ Study of combined TID/SEE effects in 65 nm
- Develop a methodology for radiation hardness verification at layout level