

WP 6 / NA5 – Task 4

AIDA-2020 Kick-off meeting 4 June 2015 Giovanni Darbo – INFN / Genova

WP6.4 deals with development of capacitive interconnections

Perform basic R&D on capacitive interconnection for electrical test structures and using different adhesives and gluing techniques. Optimise gluing process for precise alignment, high and uniform capacitance and sufficient yield and reproducibility...

Task 6.4 - Hybridization

Task 6.4 Beneficiaries and (INFN) interested groups:

- INFN-GE, IFAE, UNILIV
- Additional INFN groups involved: Milano.

Activities on HV/HR-CMOS hybridization funded by 3 year INFN project:

- 2015 2017
- INFN Interested not only on hybridization but in the whole HV/HR-CMOS project: chip design, assembly with R/O, module test in the lab, at test beam and with irradiation

Preliminary studies and on-going activities reported in the next slides:

- Process studied is front-end to HV/HR-CMOS chip gluing (chip-to-chip)
- Test with dummies achieved results and future plans
- Prototypes with available HV-CMOS chip and FE-I4 R/O chip

CCPD – Capacitively Coupled Pixel Detectors

New generation of Pixel detectors under development for the ATLAS Pixel detector at the HL-LHC

- Passive hybrid detectors use "resistive" coupling between sensor and R/O chip
- HV-CMOS detector use a High Voltage chip technology to make sensor and amplifier which is then coupled to the "usual" front-end chip...

(Some) Requirements

Capacitance uniformity

- Between pixels, from an assembly to another: ~10 % \rightarrow thickness uniformity
- Most critical for analog coupling (no discriminator in the HV/HR-CMOS)
- RD-53 chips will have 50 μm pitch, but also versions for very small pixels: 25 μm pitches are considered
- X-Y alignment: better than few μ m (cross talk / signal loss)
- Glue requirements
 - Low viscosity: $0.1 \div 0.5$ Pas
 - Radiation hard: epoxy
 - Not degassing
 - Low temperature curing, investigating UV/Temp curing glues
 - Minimum thickness of glue to give for full adhesion (usual specs are 1-2 mil, but we want less!)
- Sor chip-to-wafer and wafer to wafer TVS are needed on one or both facing chips
 - For the moment we are looking at chip-to-chip processes

Controlled Glue Thickness

Procedure for Controlled Glue Thickness

- Deposit uniform layer of SU8 photoresist on R/O chip wafer (or single chip) by spinning – tune for 5 μ m layer by controlling RPM speed
- Pattern pillars using lithographic process.

Speed (RPM) © V. Ceriale, A. Rovani, Genova, IT

Spin SU-8 photoresist

Pattern pillars by mask

244.9

INFN

Levels Neas \$.00µm

4.00µm

3.00µm

2.00µm

1.00µm

0.00µm

4.00µm

-2.00µm

-0.00µm

4.00µm

-5.00um

Height

3000

3200

Basic CCPD Process under Study

Pillars can be produced by standard lithographic processes:

INFN

- SU8 photoresist deposition (3 5 μ m thickness) by spinning on 8 12-inch wafers (for testing we could use 6-inch wafers)
- Pillars are made by mask as for bump-bonding openings in the photoresist
- Chips need alignment after a glue is deposited (flip-chip machine)
- Glue polymerization by UV light (tacking) and complete process in an oven

Plan for Hybridization – Dummy wafers

- Test pillar and glue process on dummy wafers/chips
 - Design a 6-inch wafer with FE-I4 size dummies
 - Place 48 capacitors of 1 mm² each on every dummy chip.
 - Capacitance gives information of glue thickness uniformity

Dummy Assembly

Credits: Alessandro Rovani – INFN / Genova

G. Darbo – INFN / Genova

Overlaid – Bottom metal + SU8 pillard + Top metal

Credits: Alesse

3D Simulation - HyperLynx® 3D EM

	-			
		#	Z	
	~	6	1306.000000	
	~	5	656.000000	
	✓	4	655.500000	
	✓	З	650.500000	Sum dielectric thickness
	✓	2	650.000000	•
	✓	1	0.000000	
	✓	А	3D Polygon	
Stack-u	p:			

And a cayes Metallic Stip Types Finite Dielectric Types														
Condu	ctor Assumption	Limit: 1000000	Max DK:	500	Dis	play Mar	gin: 1000	Default Tra	nsparenc	у	0 Merge			
	No. 6: D	Ztop=1e+018	T=1e+018	Epsr=1	TanD(E)=-0	Mur=1	TanD(M)=-0	Sigma=(0, 0)	Ei=0	Fd=0	Cmt=AIR			
	No. 5: D	Ztop=1306	T=650 Epsr=1	1.7	TanD(E)=0.005	6 Mur=1	TanD(M)=-0	Sigma=(0, 0)	Ei=0	Fd=0	Cmt=Silicon_Top			
	No. 4: D	Ztop=656	T=0.5 Epsr=3	.9	TanD(E)=0.001	Mur=1	TanD(M)=-0	Sigma=(0, 0)	Ei=0	Fd=0	Cmt=SiO2_Top			
	No. 3: D	Ztop=655.5	T=5 Epsr=3	.8	TanD(E)=0.012	2 Mur=1	TanD(M)=-0	Sigma=(0, 0)	Ei=0	Fd=0	Cmt=Glue			
	No. 2: D	Ztop=650.5	T=0.5 Epsr=3	.9	TanD(E)=0.001	Mur=1	TanD(M)=-0	Sigma=(0, 0)	Ei=0	Fd=0	Cmt=SiO2_Bottom			
	No. 1: D	Ztop=650	T=650 Epsr=1	1.7	TanD(E)=0.005	i Mur=1	TanD(M)=-0	Sigma=(0, 0)	Ei=0	Fd=0	Cmt=Silicon_Bottom			
	No. 0: G	Ztop=0 Epsr=1	. TanD(E)=-0	Mur=1	TanD(M)=-0	Sigma=	(4.9e+007, 0)	Ei=0 Fd=0	Cmt=G	ND				

G. Darbo – INFN / Genova

Dummy Wafers & Process Plan...

Dummy wafer layout completed

- 6-inch wafer will be produced by FBK standard thickness, one metal layer on top of passivation (oxide)
- SU8 process at Selex
- *Flip chip at Genova or at other sites*
 - Modified the flip-chip machine for UV curing
- *After qualification, process a full FE-I4 wafer.*
- We are also looking at full simulation of HV/HR-CMOS FE chip coupling for optimal signal transfer
 - Configuration data from R/O chip to HV/HR-CMOS can be transmitted capacitively... only power/ground need DC connection (laser soldering to flex hybrid as in ALICE proposal?)

Timeline: these initial test cover, approximately, the first year of AIDA-2020, we think to have partial answers before end of this year.