

HV/HR CMOS in Oxford: Facilities, experience, and interests

Arndt, Bortoletto, Huffman, Jaya John, Nickerson, Placket, Shipsey, Vigani

Oxford Particle Physics Microstructure Detector Laboratory - OPMD

Currently Under construction – expected completion in Oct 2015 Focused on generic R&D and ITK Strip/Pixel Module production

Clean Rooms

- ■160 m² of class 10,000 clean room
- ■35 m² of class 100 clean room
- Vacuum, Dry Compressed Air, Nitrogen & DI water as piped services

Equipment

- Semiprobe 300mm probe station with thermal chuck (delivery this month)
- Hesse Bondjet 820 automatic wire bonder (delivery expected Oct/Nov)
- Dage 4000Plus pull tester (Oct/Nov)
- OGP CNC500 Smartscope optical metrology system (Oct/Nov)
- Keyance VHX500 digital inspection microscope (Oct/Nov)
- Weiss Thermal chamber WTL100 (+50°C -> -50°C) (Oct/Nov)
- Henniker Bench top Plasma Cleaner (Oct/Nov)
- Aerotech pick and place assembly gantry (Sept/Oct)
- Nordson EFD Glue Robot (Delivered this week)

HV-CMOS Infrastructure 04 June 2015 Page 2

Oxford Particle Physics Microstructure Detector Laboratory - OPMD

CMOS replacement of sensors

- Participating in the evaluation of HV-HR CMOS as a sensor replacement
- Our activities up to now focused on the evaluation of strip
 - Amplifiers and comparators could be on sensor but the rest of digital processing, command I/O, trigger pipelines, etc will go into a readout ASIC
 - Transmit high-speed information instead of individual analog signals to readout ASICs.
 - The active area is *pixelated*, with connections to the periphery that can yield 2D coordinates
 - Looking at ~40 μm pitch and 800 μm length of pixel
 - Max reticle sizes are ~2x2 cm². Therefore rows of 4-5 chips could be the basic units (yield performance is critical here).
- R&D with two foundries AMS and TJ Pixel efforts have more, e.g. Lfoundry

- Cost savings.
- Fasterconstruction
- Less material in the tracker.

HVStrip 1 – Ivan Peric (Karlsruhe/KIT)

- AMS35 Technology
- 22x2 pixels, 40x400 μm² each, 750 μm total thickness

Test beam at DESY With 3, 4, and 5 GeV Electrons at different

Telescope integration could lead to better understanding of the performance including charge sharing

Hardware development

- Developed electronics for testing HVStripV1 chip on behalf of Strip CMOS collaboration
- Motherboard (green) for readout electronics and connectors
- Daughterboard (yellow) for lowactivation chip fanout, to favour irradiation

- Currently developing hardware for testing HV and HR "CHESS" Strip CMOS detectors
- HV-CHESS-1 daughterboard being manufactured this week
- 79 output channels of varied active pixels and amplifiers

04 June 2015

Page 6

Proton irradiation

- Samples irradiated with 27 MeV protons at Birmingham
- Irradiation divided in 4 steps of 15 minutes

HV-CMOS Infrastructure

- Total irradiation of 8.8x10¹⁴ and 7.6x10¹⁴ n_{ea}/cm² respectively
- After annealing (60° for 80 minutes) Sr⁹⁰ spectrum could be observed (measurements done at Cambridge)

- Exponential function to parameterize the observed background
- MIP peak observed, lower MPV than unirradiated (~60%)

Interests and Possible Contributions

- We are especially interested in:
 - Task 6.3 Sensor development:
 - Characterise test-structures and sensors using electrical measurements, lasers, sources and test beams
 - Perform irradiation campaigns to validate the radiation hardness of each process technology and sensor design
 - Task 6.4 Hybridisation
 - Perform basic R&D on capacitive interconnection
 - Setup production facilities for full-prototype assemblies (chips on test boards)
 - Deliver full assemblies to all participating projects
 - Investigate options for future industrialisation of the interconnection process

HV-CMOS Infrastructure 04 June 2015 Page 8