

Advanced European Infrastructures for Detectors at Accelerators

WP 13.2.1 Establishing new resistive materials for high rate RPCs

DESCRIPTION

- a list of low resistivity materials like HPL, Glass, Ceramics and new plastics is established;
- their resistivity (bulk, surface) and homogeneity are studied;
- their ageing properties due to large integrated doses are also determined;
- the materials are qualified by determining the rate response and the ageing properties of RPCs (single and multi-gap) by exposing these materials to intense sources/beams

DELIVERABLES

"Validation of new resistive materials for high rate RPCs through the study of the rate and ageing properties of small RPC prototypes (single and multi-gap-detectors) exposed to intense sources/beams." [M36]

The contributing partners and their roles

LIP-Coimbra Beneficiary

IN2P3-Lyon Development and tests of new resistive materials,

Participation to test-beams

INFN-Bari Participation to test-beams of high-rate RPCs

INFN-LNF Characterization of new resistive materials

IN2P3 - Clermont-Ferrand Participation to test-beams of high-rate RPCs

Research scattered over many groups/years Very different test conditions Results mostly not crosschecked

Current research on new materials by the participants

Materials loaded with carbon nanotubes (CNT)

Peek plastic

Glass (in study)

Fundamental distinction in RPCs

RPCs FOR TIMING (<100 ps) ← this project

- Very large gain required for good timing
- Very thin gas gaps (~0.3mm)
- Multigap structure for efficiency
- Fast electronics (optimized for timing)

RPCs FOR TRIGGER (~1ns) ← also this project

- Only efficiency matters (time is in principle easy)
- Low gas gain allowed, as far as efficiency is sufficient
- Electronics may be optimized for sensitivity

Challenges (interdependent)

- Inventory/procurement of materials
 High pressure laminate
 Glass
 Ceramics
 Plastics
 ???
- Electrical resistivity measurements
 Electronic vs. ionic conductivity
 Homogeneity/weak spots
- Characterization as RPC electrodes
 Mechanical properties: rigidity, hardness/machinability, porosity
 Dark count rate for the operating E field (function of the electronics/timing or trigger)
 Larger practical area?
- Optimization of electronics Optimum filtering vs. rate capability/channel (to be defined) vs. timing requirement
- Ageing
 Direct radiation damage of the materials
 Damage of the operating RPC electrodes by polymerization/etching
 - Definition of minimum standards/procedures for testing/<u>crosschecking</u>

Year

Year

Global schedule

Exploratory tests electrical/RPC

Detailed tests in lab of chambers made out of

Beam test of small but realistic systems

Electronics development

the best candidate materials

Conclusion and reporting

Address ageing

	1	2	3	4
Definition of standards/procedures				
Inventory and procurement of materials				

Year

Year

Detailed 1st year schedule

(in common with 13.2.2)

	Q1	Q2	Q3	Q4
General discussions				
Distribution of tasks				
Definition of standards/procedures				
Inventory and procurement of materials				
Exploratory tests electrical/RPC				
Electronics development				

Extra funding

	2015	2016	2017	2018	2019
Bari	INFN	INFN	INFN	INFN	INFN
Clermont-Ferrand	IN2P3	IN2P3	IN2P3	IN2P3	IN2P3
LIP			Likely	Likely	Likely
LNF	INFN	INFN	INFN	INFN	INFN
Lyon	IN2P3 (CMS)	IN2P3 (CMS)	IN2P3 (CMS)	IN2P3 (CMS)	IN2P3 (CMS)