
Event Data Model Project
WP 3.4
Benedikt Hegner

CERN

AIDA-2020 Kick-Off Meeting
3.6.2015

Data Models
• LHC experiments show that we overdid on inheritance and polymorphism

• State-of-the-art when code was written

• Sometimes deep and absurd object hierarchies

• A “CaloTower” as “Candidate” in CMS

• Most physicists do not feel productive
in the existing data models

• Many n-tuple based ‘frameworks’

• During the last 10 years technology evolved a lot!

• There is a need to rethink what we did...

2

Data Model Implementations
• Almost every experiment/project writes its own data model

implementation

• Waste of resources

• Little interoperability across projects

• LCIO tried to address this issue with a common data model for
linear collider studies

• Turned out to be a key element to the success of the LC software

• Different physics use cases require different data models though

• Convergence on a single model like LCIO would be very hard once going
beyond ee-physics

• Can one still share models and implementations... ?

3

Data Model Library

• Aim is a toolkit to define and create efficient data models

• Tailor it to your use case when needed

• Share the data definition across projects wherever possible

• Benefit from other people’s expertise (and debugging)

• Interest already expressed by

• LC - for the next evolutionary step of LCIO

• FCC - for the data model of FCC-ee, -eh, and -hh

• Could serve as common denominator for other projects

• The data model of a reconstruction library could become natural part of an
experiments overall data model

4

Technical Work

The PODIO prototype

Technical Considerations
• Simple memory model

• Employ simple structs (PODs) instead of fat objects

• Allow for data access for vectorization

• Simple class hierarchies

• Wherever possible use concrete types

• Favor composition over inheritance

• Simple I/O setup

• Keep transient to persistent layer as thin as possible

• Whenever possible store PODs as is

• Support for multi-threading

• should integrate well w/ multi-threaded frameworks

• Simple model generation

• Employ code generation to make it easy for the user

• Quick turn-around for improvement on the back-end
6

Interlude: what’s a POD?

• In C++11 A POD combines two concepts

• Support for static inititalization (i.e. a trivial class)

• E.g. No custom constructors, and destructor

• They have standard-layout

• no virtual functions and no virtual base classes,

• same access control (public,private,protected) for all non-static data members,

• ...

• A struct is the most prominent example of a POD

• A POD is good for memory layout, and memory operations

7

Separation of Concerns
• Using PODs is a good idea, but...

 ... they are a little bit too dumb to support all what is needed.

• Need smart layers on top of the PODs

• Dealing with ownership

• Allow referencing between objects

• Deal with non-trivial I/O operations

• Whenever really performance critical - leave possibility of access to bare
PODs

DataPODsDataObj

ObjectLand POD Land

8

Data

User Land

References between objects

• There is always a need of having references between objects

• E.g. a jet knowing about its components

• The “Object Land” manages the lookup in memory

• Relations are handled outside the PODs

9

8

Technical Details

MyJet

MyJetCollection

vector<MyJetObj*>

MyJetObj

lightweight
smart reference

the real thing

9

The XYZObj class

MyJetObj

MyJetData the POD

Relations vector<XYZ*>

POD and I/O - PODIOStoring Relations

MyJetCollection

vector<MyJetObj*>

MyJetData MyJetData MyJetDataMyJetData

creating buffers

ObjID ObjID ObjID ObjID ObjID ObjID ObjID ObjID ObjID ObjID

ObjID:
 collection ID
 index

AnotherObject

MyJetObj

AnotherObject

1610

POD and I/O - PODIOStoring Relations

MyJetCollection

vector<MyJetObj*>

MyJetData MyJetData MyJetDataMyJetData

creating buffers

ObjID ObjID ObjID ObjID ObjID ObjID ObjID ObjID ObjID ObjID

ObjID:
 collection ID
 index

AnotherObject

MyJetObj

AnotherObject

1611

DummyData:
 Number : int

Data definition

Code generation

12

DataPODDataObjData

Automatic creation of the 3 data views

Data Model Definition

13

New type declaration syntax
RawCalorimeterHit:
 description : "raw calorimeter hit"
 author : "B. Hegner"
 members :
 - int cellID0 // The detector specific (geometrical) cell id.
 - int amplitude // The amplitude of the hit in ADC counts.
 - int timeStamp // The time stamp for the hit.

simple members:

5

SimCalorimeterHit:
 description : "sim calorimeter hit"
 ...
 OneToOneRelations :
 - MCParticle particle // The MCParticle that caused the hit.

relation to one other object:

MCParticle:
 ...
 OneToManyRelations :
 - MCParticle daughters // The daughters of this particle
 - MCParticle parents // The parents of this particle

relation to many other objects:

Summary
• Aim is a toolkit to define and create efficient data models

• Going for a simplistic model w/ plain-old-data and simple data types

• Current prospective clients

• LC - for the next evolutionary step of LCIO

• FCC - for the data model of FCC-ee, -eh, and -hh

• Prototyping work just started

• https://github.com/hegner/podio

• Outcome will be a little design document

• Current contributors

• Frank Gaede (DESY)

• Pere Mato (CERN)

• Benedikt Hegner (CERN)
14

https://github.com/hegner/podio
https://github.com/hegner/podio

Backup

15

Memory Speed Development

More than a factor 100 !
16

Caching
• Caching is - at distance - no black magic

• Usually just holds content of recently accessed memory
locations

• Caching hierarchies are rather common:

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

Slide 19

Effective Memory = CPU Cache Memory
From speed perspective, total memory = total cache.

� Core i7-9xx has 8MB fast memory for everything.
�Everything in L1 and L2 caches also in L3 cache.

� Non-cache access can slow things by orders of magnitude.

Small � fast.

� No time/space tradeoff at hardware level.

� Compact, well-localized code that fits in cache is fastest.

� Compact data structures that fit in cache are fastest.

� Data structure traversals touching only cached data are fastest.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

Slide 20

Cache Lines
Caches consist of lines, each holding multiple adjacent words.

� On Core i7, cache lines hold 64 bytes.
�64-byte lines common for Intel/AMD processors.
�64 bytes = 16 32-bit values, 8 64-bit values, etc.
�E.g., 16 32-bit array elements.

Main memory read/written in terms of cache lines.

� Read byte not in cache � read full cache line from main memory.

� Write byte �write full cache line to main memory (eventually).

byte

Cache
Line

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

Slide 15

Voices of Experience
Jan Gray (from the MS CLR Performance Team):

If you are passionate about the speed of your code, it is imperative
that you consider ... the cache/memory hierarchy as you design
and implement your algorithms and data structures.

Dmitriy Vyukov (developer of Relacy Race Detector):

Cache-lines are the key! Undoubtedly! If you will make even single
error in data layout, you will get 100x slower solution! No jokes!

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

Slide 16

Cache Hierarchies
Cache hierarchies (multi-level caches) are common.

E.g., Intel Core i7-9xx processor:

� 32KB L1 I-cache, 32KB L1 D-cache per core
�Shared by 2 HW threads

� 256 KB L2 cache per core
�Holds both instructions and data
�Shared by 2 HW threads

� 8MB L3 cache
�Holds both instructions and data
�Shared by 4 cores (8 HW threads)

Very tiny compared to main memory!
17

Addressing Thread-Safety
• Whatever new data model library needs to think of multi-threaded

environment

• Multiple access to same data

• Process multiple events concurrently

• Problems w/ multi-threading

• Non-const objects

• Internal caching

• On-demand reading from disk

• Possibilities w/ multi-threading

• Pipeline persistent-to-transient and transient-to-persistent operations

• All this is part of the prototype activity

18

