

WP4 -3 task SiGe ROC chips for HEP

OMEGA microelectronics laboratory Ecole Polytechnique & CNRS IN2P3 http://omega.in2p3.fr

Organization for Micro-Electronics desiGn and Applications

Omega microelectronics lab

Gisele Martin-Chassard - AIDA2020 - Kick off meeting

mega

WP4 SiGe

- OMEGA coordinates SiGe run for WP4.3
 - Long experience with SiGe
 - Building consortium of « SiGe fans » (FNAL, IFIC, INFN...)
 - Interest for ATLAS Lar, CMS muons, ILC, PET...
- 3 milestones
 - Mid 2016 : choice of SiGe 130nm foundry (MS22 for M14 : june 2016)
 - October 2017 : final design review of chips in SiGe run (MS64 for M30)
 - February 2019 : test report of the chip in SiGe run (MS96 for M46)
- 1 deliverable : submission of an engineering run in SiGe before april 2018 (D4-2 for M36)
 - SPIROC3 for WP14 SiPM of CALICE AHCAL
 - PETIROC for WP13 RPCs of CMS upgrade
 - chips of other labs of the consortium

SPIROC for SiPM readout in SiGe 350 nm

- SPIROC : Silicon Photomultiplier Integrated Readout Chip
 - Developed to read out the sipm of the analog hadronic calorimeter for CALICE (ILC)
 - DESY collaboration (EUDET project)
 - Chip embedded in detector : IOW POWER !
- 36 channels autotrigger 15bit readout
 - Energy measurement : 15 bits in 2 gains
 - Autotrigger down to ½ p.e.
 - Time measurement to ~1ns
 - Power dissipation : 25µW/ch (power pulsed)

mega

 $(0.36m)^2$ Tiles + SiPM + SPIROC (144ch)

SPIROC2 in SiGe 350nm performance

SPIROC3 in SiGe 130nm

3rd generation of ILC ROC chip

SPIROC3 to readout the AHCAL of CALICE :

- 36 Independent channels (= Zero suppress)

 Digital part much more complicated (36 address pointers, ReadOut, BCID, SCA management)
- New TDC with no dead time
- New Slow Control (Triple voting) using I2C link

SDHCAL 2nd gen. HARDROC2 SiGe 350nm 4.7mm X 4.3 mm 20mm2

SDHCAL 3rd gen HARDROC3 SiGe 350nm 6.3mm X 4.7 mm 30mm2

SiGe GHz Front End

- R&D of 10GHz GBW preamps for applications where fast timing or high timing resolution is needed (TOF PET MRI, preclinical, particle physics...)
- 3 architectures in 0.35µm SiGe technology integrated and tested

Testboard #3	RF (Common Emitter)	Common Base	Super Common Base
With 100pf/50 Ohm injector (SiPM emulation)		Vb_cb : 400 #DAC	Vb_scb : 1023 #DAC
Noise floor (pedestal)	185-187 #DAC / 1.196V	216-224 #DAC / 1.259V	340-342 #DAC / 1.514V
Signal value @ 10pe	235 #DAC / 1.300V	137 #DAC / 1.085V	115 #DAC / 1.038V
Signal amplitude @ 10pe (signal minus pedestal)	50 #DAC / 110mV	83 #DAC / 174mV	226 #DAC / 476mV
Gain (mV/pe)	10.4mV/pe (5 #DAC/pe)	17.4mV (8.3 #DAC)	47.6mV/pe (22.6 #DAC/pe)
Jitter - threshold 1 pe @10pe	13ps RMS	6ps RMS	8ps RMS
Jitter - threshold 3 pe @10pe	8ps RMS	6ps RMS	8ps RMS
With 100nF DC block (for voltage gain & BW meas.)	18mV injection	18mV injection	7mV injection
Signal Value	267 #DAC / 1.371V	41 #DAC / 0.884V	192 #DAC / 1.2V
Signal amplitude (signal minus pedestal)	81 #DAC / 175mV	179 #DAC / 375mV	150 #DAC / 320mV
Voltage gain (before 50 ohm bridge => factor of 0 .5)	4.86 V/V	10.4 V/V	22.5 V/V
Bandwidth, after discriminator (Δ t 10% T50% meas.)	∆t : 150ps / 660MHz	Δt : 360ps / 280MHz	∆t : 400ps / 250MHz

\Rightarrow Need to test these structures in new SiGe 130 nm

PETIROC from 350nm to 130nm

- 32 ch SiPM GHz readout ASIC, dual polarity, 100 fC-400 pC, 6 mW/ch
- 32 trigger outputs and multiplexed data output
- Embedded 10 bit ADC and 50 ps TDC
- Dual threshold : first photons and energy

New PETIROC in SiGe 130nm to readout RPCs for CMS muon upgrade with new TDC

- \rightarrow increase digital speed and complexity
- \rightarrow decrease power dissipation

mega

Conclusion

- SiGe is an interesting technology for high speed, low power, large dynamic range readout chips
- A large family of ROC ASICs has been realized by OMEGA over the last 10 years in AMS SiGe 350 nm. They are used by many groups (ATLAS, CALICE,
- A new SiGe 130nm technology is now being investigated to enhance analog and digital performance of SoC

