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Subject of this talk: The origin of the universe, if
possible 1) avoiding the initial singularity,
2)subsequent inflation and 3) transition to the
present very slowly accelerated phase (as
compared to the inflationary phase), 1) relates
to the consistency of theory while 3) is by now a
well established observational fact (even Nobel
prizes were awarded in this respect)



WHY INFLATION?

Does not have anything to say about initial singularity,
but addresses other problems in modern cosmology:

1) why the universe is so homogeneous and isotropic,
while the standard model (before inflation) told us that
the present observed universe consisted of many causally
disconnected pieces, the so called horizon problem

2) Why the universe is so nearly spatially flat?.

1) is solved by starting from a very small region where
everything was causally connected and inflating it.

2) The inflation naturally flattens any starting space.



SUMMARY OF OUR RESULTS

Here we will see how a unified picture of
inflation and present dark energy can be
consistent with a smooth, non singular origin of
the universe, represented by the emergent
scenario, presenting an attractive cosmological
scenario. This is achieved by considering two
non Riemannian measures or volume forms in
the action. The motivation is:



— The early inflation, although solving many cosmological puzzles, like the hori-
zon and Hatness problems, cannot address the initial singularity problem;

— There is no explanation for the existence of two periods of exponential expan-
sion with such wildly different scales — the inflationary phase and the present
phase of slowly accelerated expansion of the universe.

The best known mechanism for generating a period of accelerated expansion
1= through the presence of some vacuum energy. In the context of a scalar held
theory, vacuum energy density appears naturally when the scalar field acquires an
effective potential Uy which has flat regions so that the scalar field can “slowly

roll”

and its kinetic energy can be neglected resulting in an energy-momentum
tensor Tur ™ guerU.g
we will E.t:ud‘;f a unified scenario where both an inflation

and a slowly accelerated phase for the universe can appear naturally from the

existence ol two Hat regions in the elfective scalar hield potential which we derive
systematically from a Lagrangian action principle. Namely, we start with a new
kind of globally Weyl-scale invariant gravity-matter action within the hrst-order
(Palatini) approach formulated in terms of two different non-Riemannian volume

forms (integration measures)



.
Alternative spacetime volume-forms (generally-covariant

integration measure densitites) independent on the Riemannian
metric on the pertinent spacetime manifold have profound
impact in (field theory) models with general coordinate
reparametrization invariance — general relativity and its
extensions, strings and (higher-dimensional) membranes.

Among the principal new phenomena are:

® (i) new mechanism of dynamical generation of cosmological
constant;

® (ii)) new mechanism of dynamical spontaneous breakdown of
supersymmetry in supergravity;

@ (iii) new type of "quintessential inflation” scenario in

cosmology;
O




n standard generally-covariant theories (with action
= [ dPz,/—gL) the Riemannian spacetime volume-form, i.e.,
he integration measure density is given by /—g, where
g = det ||g,.. | Is the determinant of the corresponding
lemannian metric g,,,.

—g transforms as scalar density under general coordinate
eparametrizations.

here is NO a priori any obstacle to employ insted of /—g
another alternative non-Riemannian volume element given by

he following non-Riemannian integration measure density:

1
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Here B,,. .,_, IS an auxiliary rank (1) — 1) antisymmetric tensor




. ®(B) similarly transforms as scalar density under
coordinate reparametrizations.

In particular, B,,, ., , can also be parametrized in terms of [
auxiliary scalar fields:
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Metric-Independent Volume-Forms in
Gravity and Cosmology

0 illustrate the TMT formalism let us consider the following
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ith the following notations:
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® The Lagrangians L = 1. R + L") include both

standard Einstein-Hilbert gravity action as well as
matter/gauge-field parts. Here H = " H,,..(I') is the scalar
curvature within the first-order (Palatini) formalism and
H,,.(I') is the Ricci tensor in terms of the independent affine
connection I'y .




Varying (2) w.rt. H and B tensor gauge fields we get:
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Now, varying (2) w.r.t. ¢’ and taking into account (3)—(4) we
arrive at the following effective Einstein equations (in the
first-order formalism):

|
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with effective energy-momentum tensor:
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ind with a dynamically generated effective cosmological
>onstant thanks to the non-zero integration constants

Ag = K° {clx—l—c:g)_l M .
et us now consider modified-measure gravity-matter theories
onstructed in terms of two different non-Riemannian
'olume-forms (employing again Palatini formalism, and using
Inits where Gewton = 1/16m):
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® &,(A)and ®,(B) are two independent non-Riemannian
volume-forms:
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D;(A) and ®2(B) are two independent non-Riemannian
olume-forms:
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— L2} denote two different Lagrangians of a single scalar matter field



The variation with respect to the H
three index potential tells us, that on
shell, up to a proportionality constant

the second measure is the Riemannian measure (the
square root of the determinant of the metric). The 2 part
of the action has been used in the past for (i) string,
super-strings, branes and super-branes, (ii) modified
measure formulations of supergravity.

In this case the analogous of the H field is crucial to
implement supersymmetry. In case of the extended
objects the proportionality constant between the
measure and the Riemannian measure represents the
generation of a dynamical tension of the extended object.



Alternative realization of a non
Riemannian measure, from a mapping
of two spaces:

density can be built out of four auxiliary scalar fields " (i = 1.2, 3,4)
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d{ ) 15 a scalar density under general coordinate transformations.



ldeas from where can we get 4
scalars, for example from Cederwall

and collaborators , to realize duality
by doubling of space time, adding “twiddle”

coordinates which are scalars w/r to the

“normal space” . We then can define a “brane “
where the twiddle coordinates are a functions of
un-twiddle coordinates and Jacobian from the
mapping defines measure of integration?,

define XM to denote coordinates and dual coordinates

_ T
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There is also Jurgen Struckmeier

With his canonical formulation of generally
coordinate transformation, for this he

considers dynamical space time variables

X on top of the parameter coordinates y and
then the mapping between these two spaces
appears naturally as a measure of integration.



e .(1.2) denote two different Lagrangians of a single scalar
matter field of the form:

1
S —59 0Pl —V(p) , Vip)=frexpi—ap;},

O e
L-(2)=—§6 g oupdp+U(p) , Ul(p)= faexp{—2a¢},

where o, f1, f> are dimensionful positive parameters,
whereas b is a dimensionless one.

Global Weyl-scale invariance of the action
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A

gs. of motion w.r.t. affine connection I , yield a solution for the
atter as a Levi-Civita connection:
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.Ir.t. to the Weyl-rescaled meftric g,,,,:
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.
Variation of the action (25) w.r.t. auxiliary tensor gauge fields

A B and H o, yields the equations:

u[B+L0] =0, 8,[1 +er2+ 2] — o0, 5,(222)) o,

V= V=
(32)
yhose solutions read:
(I:;(B) = x9 —const , R+ (1) — —M; = const ,
—4g

: ®(H)
EA e ptog s —M, = const .

N

Here M, and M- are arbitrary dimensionful and y- arbitrary
limensionless integration constants.



The first integration constant v- in (33) preserves global
Weyl-scale invariance whereas the appearance of the second

and third integration constants M,, M- signifies dynamical

spontaneous breakdown of global Weyl-scale invariance due to
the scale non-invariant solutions (second and third ones) in (33).
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the scale factor vq:

where T(1:2) — gtv'T, ..'!j |
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where y1 and ya are defined in (9), and I;';},-"" are the energy-momentum tensors
of the scalar field Lagrangians with the standard definitions:



of the scalar field Lagrangians with the standard definitions:

1,2 i
Thw” = guu LY - 25 LY (13)

Taking the trace of Eqs.(12) and using again second relation (11) we solve for
the scale factor vq:

T2 14 + Mo (14)
LU — T2 —afy

x1 = 2x2

where 712} — g"‘”T}E:,'E}.
Using second relation (11) Eqs.(12) can be put in the Einstein-like form:

1 1 (1) | . RS ri} (1)
7i2) (1) JERY. ] -
EI ﬂ i 'I'Ef-w 'lfg+-£{L + Mji) ) : (15)
where: v
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2=1-= 2¢ (L) + my ) (16)

Let us note that (9), upon taking into account second relation (11) and (16), can
be written as:

Jur = X112 gpr . (17)



Now, we can bring Eqgs.(15) into the standard form of Einstein equations for
the rescaled metric gy, (17), ie. the Einstein-frame equations:

_ 1_ _ 1 =i
Ry (g) — oYL Rig) = 5w (18)

with energy-momentum tensor corresponding (according to (13)) to the following
effective (Einstein-frame) scalar field Lagrangian:

1 (1} X2 [y (1) ]
L — L Ay L M L M . 19
it = mﬂ{ + My + 25 LS 4 My + (LD 4 My) } (19)

In order to explicitly write L.g in terms of the Einstein-frame metric gue (17)
we use the short-hand notation for the scalar kinetic term:

X = —%gﬂ”amaapp (20)

and represent L'"? in the form:
LW =y 2x-v , L% =2k ™™X+U, (21)

with V and U7 as in (3)-(4).
From Fqgs.(14) and (16), taking into account (21), we find:
" M — g
L _ (V- M) [1 —IQ(L —EE)I] . (22)
X129y (U + My + e(V — My }ﬂ] V- M

Upon substituting expression (22) into (19) we arrive at the explicit form for the
Einstein-frame scalar Lagrangian:

Lot = A(@)X + B(¢)X* — Usa () (23)
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Performing transition to the Einstein frame yields the following

effective scalar Lagrangian of non-canonical “k-essence” (kinetic
guintessence) type (X = % g"" 0,0, — scalar Kinetic term):

Leg = A(0)X + B(9)X* — U (p) , (34)

where (recall V = fie 2 and U = foe22¥):

V — M,
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4x 9 U+A’12+€(V —1\/]1)2




Most remarkable feature of the effective scalar potential U.g(®)
(37) — two infinitely large flat regions:

@ (-) flat region — for large negative values of ©:

i/ 12

Lrp == (38)
ele) = Uy = dx2(1 +efi/fo)
@ (+) flat region — for large positive values of :
i M2/ M-
Uei () = Uy = / ~ (39)

Ax2(L + eMZ /M)’

For large positive values, we get exactly Modified Exponential Potential for Quintessence
discussed yesterday by Dr. Hui-Yiing Chang , a constant defined above, plus an exponentially
decreasing contribution




Qualitative shape of the effective scalar potential U.g (37) as
function of ¢ for M; < 0.




Shape of the effective scalar potential Ueg () (26) for My = 0.

15k




3 Flat Regions of the Effective Scalar Potential

Depending on the sign of the integration constant My we obtain two tyvpes of
shapes for the effective scalar potentail U.g(y) (26) depicted on Fig.1. and Fig.2.

The crucial feature of U g(y) is the presence of two very large Hat regions — for
negative and positive values of the scalar field . For large negative values of ¢ we
have for the effective potential and the coeflicient functions in the Einstein-frame

scalar Lagrangian (23)-(26):

: o fi/fa
Verl#) = Vo) = mati +erprmmy * 7

L+ 5bf1/1 b/4f2 — (1 +bf1/fa) g

Alp) ~ A, = ., Bly)~B_,=—
In the second flat region for large positive :
_ . M7 [Ma
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Alp) ~ A = s Ble)~ B = . 30
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From the expression for Ueg () (37) and the figures 1 and 2 we
deduce that we have an explicit realization of quintessential
inflation scenario (continuously connecting an inflationary
phase to a slowly accelerating “present-day” universe through
the evolution of a single scalar field).

The flat regions (38) and (39) correspond to the evolution of the
early and the late universe, respectively, provided we choose
the ratio of the coupling constants in the original scalar potentials
versus the ratio of the scale-symmetry breaking integration
constants to obey:

M3 /M
1+ €M12/M2 ’

2/ f2
1+ €ef/fo

which makes the vacuum energy density of the early universe

>

(40)

0000000000000



WE OBTAIN THE SEE-SAW FORMULA
FOR PRESENT
VACUUM ENERGY DENSITY

Uiy ~ M2 /M2 of the order M& ., /ML, ~ 10120012,



It is interesting to notice that although
the two constants of integration indivi-

dually violate scale invariance, the combination
which appears in their contribution to the
asymptotic value of the effective potential in

one of the flat regions
i)

M; Mg

-

is scale invariant



Before proceeding to the derivation of the non-singular “emergent universe”
solution describing an initial phase of the universe evolution preceeding the in-
flationary phase, let us briefly sketch how the present non-Riemannian-measure-
modified gravity-matter theory meets the conditions for the validity of the “slow-
roll” approximation [6] when ¢ evolves on the flat region of the effective potential
corresponding to the early universe [(27)-(28).

To this end let us recall the standard Friedman-Lemaitre- Robertson-Walker
space-time metric [26]:

2
ds? = —di® + a2(t) [% +r2(d6? + sin® 04?)| (33)
— Kr
and the associated Friedman equations (recall the presently used units Gyowion =
1/167):

a 1 K 1

i_ 1. ., m2e K _1, pg=9 34
describing the universe’ evolution. Here:
1 -2 3 . 4 _
p=54lp) ¥ +7Bp) ¥ +Uea(yp) . (35)
1 a1 4
p=3A(¢) ¢ +1B(¢) ¥ ~Usar(p) (36)

are the energy density and pressure of the scalar field ¢ = ©(t). Henceforth the
dots indicate derivatives with respect to the time t.



Let us now consider the standard “slow-roll” parameters [7]:

P
Hy

(37)

where = measures the ratio of the scalar field kinetic energy relative to its total
energy density and i measures the ratio of the fields acceleration relative to the
“friction” {~ 3H ) term in the pertinent scalar field equations of motion:

. .2 ! . 3 ’ 1 .2 3 ;.4
F(A+3BY )+3H 9 (A+BY¥ ]|+U,.;—§A ¥ +7B ¥ =0, (38)
with primes indicating derivatives w.r.t. .

L. - .. .2 .8 .4
In the slow-roll approximation one ignores the terms with &, ¢ | ¢ | ¥ so that
the g-equation of motion (38) and the second Friedman Eq.(34) reduce to:

JAH ¢ +Ug =0 HE:% T - (39)

Now, using the fact that ¢ evolves on a flat region of Uz we deduce that H =a
Ja =~ const, so that a(t) grows exponentially with time and, thus, in the second
Eq.(39) the spatial curvature term K/a” is ignored. Consistency of the slow-roll
approximation implies for the slow-roll parameters (37), taking into account (39),
the following inequalities:

2 Ul
A U.g

1 U2 2 UL 24’
—(i] 1 , gt -e- vE — <1. (40)
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Since now ¢ evolves on the flat region of U.g for large negative values (27),
the Lagrangian coefficient function A(yg) ~ A;_, as in (28) and the gradient of the
effective scalar potential is:

Vel = a1 T ef2 Fa) ()

which yields for the slow-roll parameter = (40):

da” M7e™¥

- fi(1+bf1/2f2)(1+ efi/fa)

%, 1 for large negative o . (42)

Similarly, for the second slow-roll parameter we have:

2 Ugg 40 M1 e™¥

l.d_ Ut | = Pl bf1/202) % 1 for large negative o . (43)




The value of ¢ at the end of the slow-roll regime 0.4 15 determined from the
condition £ ~ 1 which through (42) vields:

2a02
_ﬂﬂ'ﬁ-nn.-:l. . ‘]ﬂ Jﬂ-.f'l

T iU+ bf1/2f2) (1 4 €f7 [ f2)

¢ (44)

The amount of inflation when ¢ evolves from some initial value ;, to the end-point
of slow-roll inflation .,4 is determined through the expression for the e-foldings

N

Pand Pand H Pemd EHﬂA W umd Al it
N = Hdt:f fdlpg—f : f:;,gn_x—f s (45)
Fin in F Vir Lreﬂ Fin ELreﬁ'

where Eqs.(39) are used. Substituting (27), (28) and (41) into (45) yields an ex-
pression for N which together with (44) allows for the determination of ;-

Nl +bha/fa) f —ae. ooy
N o o (e Pin _ g0 } (46)



“Emergent universe” is defined as a solution of the Friedman
eqs.(44) subject to the condition on the Hubble parameter H:

H=0 — a(t)=ap=const, p+3p=0 , g = %p (= const) ,
’ (47)
with p and p as in (45)-(46). Here K = 1 ("Einstein universe”).
The “emergent universe” condition (47) implies that the
p-velocity p=yp, is time-independent and satisfies the
bi-quadratic algebraic equation:
EBH ﬁi”; +2A(.) fé”ﬁ —2U) =0, (48)

where A(_y, B(_), U are the limiting values on the (—) flat
region of A(p), B(p), Uesg(p) (35)-(37).




he solution of Eq.(48) reads:

. 2 2 ;

and, thus, the “emergent universe” is characterized with finite
initial Friedman factor and density:

6K 1 o T -4
p
— —A,_\Pg +=B(yPo+Ury, (80
Qg » PO 9 ()‘PO 4 ()SOO () (>0)

ith <[0(2) as in (49).




To analyze stability of the present emergent universe solution:

s Gk 1 .2 3 .4
aj = o fo = ﬁﬂ"!{—j o +1-E['_:| o +U_y . (50)

. 2
with ¥p as in (49), we perturb Friedman Eqs.(34) and the expressions for p, p
(35)-(36) w.r.t. a(t) = ao + da(t) and ¥ (t) =¥o +4 ¥ (t), but keep the effective
potential on the flat region U.g = Uj_y:

da 1 2on .
Ly —(dp+3p) . o= —-F5a(51
M+12{P+ r) o - a(51)

! .8y _ - 2 _ . -8 :
|5I|5| = (."1.[_} ey +3.E{_:| 'FI:I) o — —ﬁ:ﬂlﬁﬂ. , op= [:"'1['—] w0 +E|:_} "P{I) d {52}

From the first Eq.(52) expressing § ¥ as function of da and substituting into the
first Eq.(51) we get a harmonic oscillator type equation for da:

2 f
. L2 j:\/.d[_} 3B_,U,_,
daotwba=0 , w = zP0 .

A :FEJA?_} +3.E['_:|Lr['_:|

(563)

where:

1 .2 :
20 = i IFI:I [.."1.['_) + E\/A?_} 1 E-E['_:]Lr[_}_ . {54}



with ¢n from (49). Thus, for existence and stability of the emergent universe
solution we have to choose the upper signs in (49), (53) and we need the conditions:

AL +3BU >0 | Ay -2/A2 +3B U] >0, (55)

The latter yield the following constraint on the coupling parameters:

ma:{{—ﬂ, —8(1 4 3efi/fa) [1 - \/1 - +31£F”E}” < a% < -1, (56)
1

in particular, implying that & < 0. The latter means that both terms in the original
matter Lagrangian L'® (4) appearing multiplied by the second non-Riemannian
integration measure density @5 (2) must be taken with “wrong” signs in order
to have a consistent physical Einstein-frame theory (23)-(25) possessing a non-
singular emergent universe solution.

2
For € = 0, since the ratio % proportional to the height of the first Hat region of

the effective scalar potential, 1.e., the vacuum energy density in the early universe,
must be large (cf. (31)), we find that the lower end of the interval in (56) is very
close to the upper end, ie, by~ —1.



The problem of the transition from the
Emergent Phase to Inflation

DYNAMICAL SYSTEMS ANALYSIS .SHOWS
NUMERICALLY THE EXISTENCE OF THE
TRASITION OF THE DIFFERENT PHASES
DISCUSSED HERE, NON SINGULAR EMERGENT

UNIVERSE, FOLLOWED BY INFLATION,
FOLLOWED BY ASLOWLY ACCELERATED PHASE

(Today)
THE TRANSITION FROM EMERGENT UNIVERSE
TO SLOW ROLL INFLATION IS INTERESTING



Generalizing the model to include a
curvaton field for re-heating

. 1 ., 1, ot : g )
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In the present paper we have constructed a new kind of gravity-matter theory de-
fined in terms of two different non-Riemannian volume-forms (generally covariant
integration measure densities) on the space-time manifold, where the Einstein-
Hilbert term R, its square R?, the kinetic and the potential terms in the pertinent
cosmological scalar field (a “dilaton™ ) couple to each of the non-Riemannian inte-
gration measures in a manifestly globally Weyl-scale invariant form. The principal
results are as follows:

— Dwnamical spontaneous symmetry breaking of the global Weyl-zcale invariance.

— In the physical Einstein frame we obtain an effective scalar field potential with
two flat regions — one corresponding to the early universe evolution and a second
one for the present slowly acelerating phase of the universe.

— The flat region of the effective scalar potential appropriate for describing the
early universe allows for the existence of a non-singular “emergent” type be-
ginning of the universe’ evolution. This “emergent” phase is followed by the
inflationary phase, which in turn is followed by a period, where the scalar
field drops from its high energy density state to the present slowly accelerating
phase of the universe,

The flatness of the effective scalar potential in the high energy density region
makes the slow rolling inflation regime possible.

The presence of the emergent universe’ phase preceeding the inflationary phase
has observable consequences for the low CMB multipoles as has been recently
shown in Ref.[29]. Therefore, a full analysis of the CMB results in the context of
the present model should involve not only the classical “slow-roll” formalism, but
alzo the “super-inflation” one, which describes the transition from the emergent
universe to the inflationarv phase.



CMB, RESULTS

CONSTRAINTS has being performed. Consistent
with Planck not BICEP2

Emerpent Cosmology, Inflaton and Dark Energy
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Pacheva, Jul 23, 2014

e-Print: arXiv:1407.6281 [hep-th]
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http://arxiv.org/abs/arXiv:1407.6281

Recall on wider applications of
alternative measures

o (1) Study of D) = 4-dimensional models of gravity and matter fields con-
taiming the new measure of integration (1), which appears to be promising
candidates for resolution of the dark energy and dark matter problems, the
fifth force problem, etc.

o (11) Study of a new type of string and brane models based on employing
of a modified world-sheet'world-volume integration measure. It allows
for the appearance of new types of objects and effects like, for example, a
spontaneously induced varable string tension.

o (111) Studying modified supergravity models. Here we will find some out-
standing new features: (a) the cosmological constant arises as an arbitrary
integration constant, totally unrelated to the onginal parameters of the ac-
tion, and (b) spontaneously breaking of local supersymmetry invariance.



THANK YOU FOR YOUR ATTENTION !



