Beyond Schwarzschild: quantum implications for black holes

Steve Giddings
UC Santa Barbara

Karl Schwarzschild Meeting 2015
FIAS
Black holes are the most profoundly mysterious objects in nature.

While the BH concept first originated w/ Michell (1783) and Laplace (1796), Schwarzschild first placed them in our current understanding of gravity:

1916: Schwarzschild solution

\[ds^2 = (1 - \frac{\alpha}{R}) dt^2 - \frac{dR^2}{1 - \frac{\alpha}{R}} + R^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

\[R = (r^2 + \alpha^2)^{1/2} \]
Interestingly, their existence, and the need to explain their evolution, calls for a major revision of current laws of nature.

This conclusion arises from increasingly strong arguments for a significant modification of Schwarzschild’s original picture ...
A first crucial update: Hawking 1974

Include quantum effects;

Black holes evaporate

$$\omega \sim \frac{1}{R}$$

$$\frac{dM}{dt} \sim -\frac{1}{R^2}$$

Black holes evaporate
This is based on physics we know and love ...

Semiclassical spacetime + local QFT

... but yields a fundamental conflict

- Entanglement between BH and environment grows: monotonic
- If BH disappears, unitarity violated

Failure of quantum mechanics

Conflict among basic principles:

Principles of relativity
Principles of quantum mechanics
Principles of locality
Apparently one or more of these principles must be modified.

A goal:

Find more basic physics that:

- Matches LQFT in "ordinary circumstances"
 E.g. doesn’t violate locality, etc.

- Saves quantum mechanics

- Minimally disrupts semiclassical picture

The need to unitarize BH evolution is a crucial constraint
What is required?

In order to

1) approximately maintain spacetime,
2) save unitarity/QM:

Need to transfer q. information (entanglement) from BH to environment.

LQFT doesn’t do this (*locality*)

How is SCST + LQFT modified?
A first proposal for nonlocal transfer: hep-th/9203059

Massive Remnant

Nonlocal information transfer

Subsequent incarnations:
- Fuzzballs
- Firewalls (if $R_{rem} = R$)
- Planck stars
The problems with such massive remnant alternatives:

- They represent a violent breakdown of semiclassical spacetime (not minimal disruption)

- They “artificially” introduce new short-scale (“hard”) physics to resolve a long-distance problem

Is there a less violent alternative?
Proposal: Nonviolent nonlocality -- basic picture

Characteristics:

1) Information transfer from “internal” DOF to BH exterior. Locality w.r.t. SC geom forbids: “nonlocal”

2) Relevant scales

\[L \gg l_{Pl} \quad \text{e.g.} \quad L \sim R^p, \quad p > 0 \]

(characterizes horizon separation, wavelengths)

“Soft,” or nonviolent

(see e.g. arXiv:0911.3395, 1108.2015, 1201.1037, 1211.7070; Dodelson/Silverstein?)
Another way to state:

Complementarity/AMPS postulates

I) Unitary QM / S-matrix

II) Semiclassical field eqns outside stretched horizon

III) BH is Q. system with # states given by S_{BH}

IV) Free-faller sees nothing unusual crossing horizon

Violate postulate II

specifically: info transfer allowed, over characteristic scale L
How does this arise from a fundamental theory?

Don’t yet have complete picture.

Dovetails w/understanding: *locality not sharp in QG*

(See, e.g., hep-th/010323, hep-th/0604072, 1503.08207)

Maybe comes out of AdS/CFT, somehow.

(If/when we understand what AdS/CFT tells us.)

Or: BH as key *guide* to principles? (cf: atom/QM)
A possible approach:

If “small” corrections near BH: can model as *modification to LQFT*?

Can begin to test:

What sharp constraints?
(firewall, or more radical, necessary?)

What do we have to give up?
(we know something!)

Are there observational consequences?

[arXiv:1211.7070, 1302.2613, 1310.5700]
Let’s avoid double standards:

Objection: no fundamental theory, or complete model

E.g. “I can find problem X in your model. Therefore, there must be a firewall.”

Well, one doesn’t have a fundamental theory or complete model of firewalls either, and if people started to write them down I expect there would be various serious objections.

So: can we infer reasonable physical behavior by making more detailed models,

Or is there a sharp argument against such models on reliable physical grounds?

Put differently: since the unitarity crisis tells us we have to give up something, assess: what could it plausibly be?
Phenomenological *models* (not yet theories)

Assume SCST, LQFT, +corrections, for \(r > R/2 \)

\[
\int \! dt \Delta H \sim - \Delta S \sim \sum_{AB} \int_{r > R/2} dV_4 \; O_A \; G_{Ab}(x) \; O_b(x)
\]

acts on “\(\mathcal{H}_{r < R/2} \)”

acts on “\(\mathcal{H}_{r > R/2} \)”

coupling functions

Simple examples:

\[
\int dV_4 J(x) \Phi(x)
\]

J’s: quantum sources;

\[
\int dV_4 J^{\mu\nu}(x) T_{\mu\nu}(x)
\]

\~ classical

[arXiv:1302.2613, 1310.5700, 1401.5804]
These interactions transfer information (entanglement) from BH to its atmosphere; it then escapes.

A challenge:

Generically, unless disrupt Hawking process, these yield

$$\frac{dE}{dt} > \frac{dE}{dt} \bigg|_{\text{Hawk}}$$

So \(S_{bh} < S_{BH} \) by detailed balance

So, we face a choice:

1) Make peace w/ \(S_{bh} < S_{BH} \)?

2) Find special evolution w/ Hawking flux (or, no go)

3) Firewall, or more radical ...
Do we know BH density of states $\sim e^{S_{BH}}$?

Alternative: S_{BH} characterizes semiclassical near-horizon geometry (which we know doesn’t give exact physics - extreme case FW)

Any incontrovertible evidence for S_{BH}?

1) BTZ/Cardy formula 2+1 special; assumes AdS=CFT
2) Strominger/Vafa weak coupling; \simBPS
3) Hanada et al
These are strongly suggestive.

Are they incontrovertible?

If $S_{bh} = S_{BH}$ did imply firewalls, would we believe it?

$.\cdot$ perhaps $S_{bh} < S_{BH}$ consistent.

But this is a little inelegant; people are uncomfortable giving up such a simple story.
An apparent alternative, with intriguing features:

\[G^{\mu\nu}(x) \]
\[\int dV_4 T^{\mu\nu}(x) T_{\mu\nu}(x) \]

I.e. effective description: BH state-dependent metric fluctuations
(think of as \(\sim \) inaccuracy of classical geometry)

universality \(\sim \) gravity

These can “modulate” Hawking radiation; possibility of small (vanishing?) increase of energy flux.

\[\delta P_-(x^-) = \int dx^- \langle \delta T_{--} \rangle_G = 0 \]

2d model: to linear order in \(G \)

[arXiv:1401.5804]

(helps address mining)
How large are these effective fluctuations?

Constraint: \(\frac{dS_{vN}}{dt} \sim - \frac{1}{R} \)

Suppose (e.g.) \(L \sim 1/\omega \sim R \)

\[\Rightarrow \quad \text{e.g.} \quad \langle I | G^{\mu \nu}(x) | J \rangle \sim e^{-i\omega v + ikr} f_L(r) \]

\[\mathcal{O}(1) \quad \text{restricts to} \quad r \lesssim R + L \]

\[\therefore \quad \text{Strong, soft effective metric fluctuations} \]

A new firewall alternative (significant mods. to HR...)

(Some superficial similarity to Dvali/Gomez; though strong interacting, closer to Schwarzschild; not just weak graviton “gas”)

[arXiv:1401.5804]
An opportunity:

BH

Event horizon telescope:

BH shadow, photon ring

(see talk by S. Britzen)

Thursday, July 23, 15
An opportunity: Event horizon telescope:

BH

arXiv:1406.7001

"Shimmering" BHs: distort

r=3R/2
(Schwarzschild)

Sgr A*

SBG/Psaltis, WIP

"Shimmering" BHs: distort

Theoretical uncertainty:

\[t_{qn} \sim t_{Fast\,Sc} \sim R \log R \sim 8 \text{ hr} \]
\[t_{1/2} \sim R^3 \sim 10^{74} t_{\text{Universe}} \]

\} \text{ bounds}

If due to inaccuracy of geometrical description, R lnR reasonable
Summary:

BHs have led us to a “Unitarity crisis;” represents a conflict among fundamental principles ... something has to give

“NVNL” proposes “soft” information transfer to the “atmosphere” of a BH; violates macro. SC locality

Typical models give $S_{bh} < S_{BH}$; $S_{bh} = S_{BH}$ requires significant modifications of Hawking radiation

Effective metric fluctuations: a natural, universal alternative

Necessary info transfer: strong, soft fluctuations; big departure from Schwarzschild’s solution!

These present observational opportunity as we image BHs (EHT, etc.)