Examples

Perturbative expansions

Outlook

How to (path) integrate by differentiating arXiv:1507.04348, appeared in JPA

Achim Kempf

Departments of Applied Mathematics and Physics and Institute for Quantum Computing, University of Waterloo and Perimeter Institute

Joint work with D.M. Jackson (UW) and A.H. Morales (UCLA)

\sim			
		100.00	0147
•••	ve	1 V I	ew

The problem

• Integration is hard, harder than differentiation.

New methods	Examples	Perturbative expa

The problem

• Integration is hard, harder than differentiation.

• Path integrals (which are also functional Fourier transforms)

$$Z[J] = \int e^{iS[\phi] + i \int J\phi \ d^n x} D[\phi]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

are harder than functional derivatives.

New methods	Examples	Perturbative expansion

The problem

• Integration is hard, harder than differentiation.

Overview

• Path integrals (which are also functional Fourier transforms)

$$Z[J] = \int e^{iS[\phi] + i \int J\phi \ d^n \times} D[\phi]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

are harder than functional derivatives.

• If only integration could be expressed in terms of differentiation!

New methods	Examples	Perturbative expansion

The problem

• Integration is hard, harder than differentiation.

• Path integrals (which are also functional Fourier transforms)

$$Z[J] = \int e^{iS[\phi] + i \int J\phi \ d^n \times} D[\phi]$$

are harder than functional derivatives.

• If only integration could be expressed in terms of differentiation! **Or can it?**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview

- Main message?
 - New, convenient methods for integration and integral transforms such as Fourier and Laplace, using only derivatives.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Overview

- Main message?
 - New, convenient methods for integration and integral transforms such as Fourier and Laplace, using only derivatives.
- Advantages?
 - Often quicker, simpler.
 - Handles distributions well.
 - For cases that are too hard, offers new perturbative approaches.

Overview

- Main message?
 - New, convenient methods for integration and integral transforms such as Fourier and Laplace, using only derivatives.
- Advantages?
 - Often quicker, simpler.
 - Handles distributions well.
 - For cases that are too hard, offers new perturbative approaches.

- Applications to QFT
 - Expresses functional integrations and functional transforms in terms of functional differentiation.
 - Offers new perturbative approaches.

New representations of integration:

$$\int_{a}^{b} f(x) dx = \lim_{\epsilon \to 0} f(\partial_{\epsilon}) \frac{e^{\epsilon b} - e^{\epsilon a}}{\epsilon}$$

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{\epsilon \to 0^+} \left(f(\partial_{\epsilon}) + f(-\partial_{\epsilon}) \right) \, \frac{1}{\epsilon}$$

Compare with:

$$f'(x) = \lim_{\epsilon \to 0} (f(x+\epsilon) - f(x)) \frac{1}{\epsilon}$$

And there are more methods:

Integration:
$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \, f(-i\partial_x) \, \delta(x)$$

And there are more methods:

Integration:
$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \, f(-i\partial_x) \, \delta(x)$$

Fourier:
$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

And there are more methods:

Integration:
$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \, f(-i\partial_x) \, \delta(x)$$

Fourier:
$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

Laplace:
$$\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x}$$

And there are more methods:

Integration:
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x)$$

Fourier:
$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

Laplace:
$$\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x}$$

Inverse Laplace: $\mathcal{L}^{-1}[f](x) = f(\partial_x) \delta(x)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outlook

But are they useful ?

Recall:

$$\int_{-\infty}^{\infty} f(x) \ dx = \lim_{x \to 0} 2\pi \ f(-i\partial_x) \ \delta(x)$$

But are they useful ?

Recall:

$$\int_{-\infty}^{\infty} f(x) \ dx = \lim_{x \to 0} 2\pi \ f(-i\partial_x) \ \delta(x)$$

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx =$$

But are they useful ?

Recall:

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \, f(-i\partial_x) \, \delta(x)$$

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i\partial_x} \delta(x)$$

But are they useful ?

Recall:

$$\int_{-\infty}^{\infty} f(x) \ dx = \lim_{x \to 0} 2\pi \ f(-i\partial_x) \ \delta(x)$$

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i\partial_x} \delta(x)$$
$$= \pi \lim_{x \to 0} \left(e^{\partial_x} - e^{-\partial_x} \right) \left(\Theta(x) + c \right)$$

Outlook

But are they useful ?

Recall:

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \, f(-i\partial_x) \, \delta(x)$$

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i\partial_x} \delta(x)$$
$$= \pi \lim_{x \to 0} \left(e^{\partial_x} - e^{-\partial_x} \right) \left(\Theta(x) + c \right)$$
$$= \pi \lim_{x \to 0} \left(\Theta(x+1) + c - \Theta(x-1) - c \right)$$

Outlook

But are they useful ?

Recall:

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \, f(-i\partial_x) \, \delta(x)$$

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i\partial_x} \delta(x)$$
$$= \pi \lim_{x \to 0} \left(e^{\partial_x} - e^{-\partial_x} \right) \left(\Theta(x) + c \right)$$
$$= \pi \lim_{x \to 0} \left(\Theta(x+1) + c - \Theta(x-1) - c \right)$$
$$= \pi$$

Examples for integration

Similarly, one quickly obtains, e.g.,

$$\int_{-\infty}^{\infty} \frac{\sin^5(x)}{x} dx = 3\pi/8$$
$$\int_{-\infty}^{\infty} \frac{\sin^2(x)}{x^2} dx = \pi$$
$$\int_{-\infty}^{\infty} \frac{(1 - \cos(tx))}{x^2} dx = \pi |t|$$
$$\int_{-\infty}^{\infty} x^2 \cos(x) e^{-x^2} dx = \sqrt{\pi} e^{-1/4}/4$$

etc ...

Examples

Perturbative expansions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outlook

Examples for Fourier

Now how much harder is Fourier?

Examples

Perturbative expansions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outlook

Examples for Fourier

Now how much harder is Fourier?

Fourier transforming is even easier than integrating!

New methods

Examples

Perturbative expansions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outlook

Examples for Fourier

Recall the new methods for integration and Fourier:

Integration:
$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \, f(-i\partial_x) \, \delta(x) \checkmark$$

New methods

Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outlook

Examples for Fourier

Recall the new methods for integration and Fourier:

Integration:
$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \, f(-i\partial_x) \, \delta(x) \quad \checkmark$$

Fourier:
$$\mathcal{F}[f](x) = \sqrt{2\pi} \, f(-i\partial_x) \, \delta(x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples for Fourier

Recall the new methods for integration and Fourier:

Integration:
$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \, f(-i\partial_x) \, \delta(x) \checkmark$$

Fourier:
$$\mathcal{F}[f](x) = \sqrt{2\pi} \, f(-i\partial_x) \, \delta(x)$$

How are they related?

The zero-frequency value of the Fourier transform is the integral (up to a prefactor of $\sqrt{2\pi}$).

Examples

Perturbative expansions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outlook

Examples for Fourier

For example, for $f(x) = \sin(x)/x$, recall:

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i\partial_x} \delta(x)$$
$$= \pi \lim_{x \to 0} \left(e^{\partial_x} - e^{-\partial_x} \right) \left(\Theta(x) + c' \right)$$
$$= \pi \lim_{x \to 0} \left(\Theta(x+1) - \Theta(x-1) \right)$$
$$= \pi$$

By not taking the limit and by dividing by $\sqrt{2\pi}$, we obtain immediately:

$$\mathcal{F}[f](x) = \sqrt{\pi/2} \quad (\Theta(x+1) - \Theta(x-1))$$

Examples

Perturbative expansions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outlook

Proof of the Fourier formula

Why does this work?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of the Fourier formula

The claim is:

$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

Let us apply this to a plane wave: $f(x) = e^{ixy}$.

We obtain the right answer:

$$\mathcal{F}[f](x) = \sqrt{2\pi} e^{y\partial_x} \delta(x) \\ = \sqrt{2\pi} \delta(x+y)$$

And the plane waves from a basis of the function space.

What is going on, intuitively?

$$\int_{-\infty}^{\infty} f(x) \ dx = 2\pi \ \delta(i\partial_x) \ f(x)$$

What is going on, intuitively?

$$\int_{-\infty}^{\infty} f(x) \ dx = 2\pi \ \delta(i\partial_x) \ f(x)$$

How does it work?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is going on, intuitively?

$$\int_{-\infty}^{\infty} f(x) \ dx = 2\pi \ \delta(i\partial_x) \ f(x)$$

How does it work?

Regulate, e.g., this way: $\delta(x) = \lim_{\sigma \to 0} (2\pi\sigma)^{-1/2} e^{-x^2/2\sigma}$

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi\sigma}} e^{\partial_x^2/2\sigma} f(x)$$

Integration from asymptotics of heat flow !

Perturbative expansions

In QFT, we'd like to apply the new methods, e.g.:

Integration:
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x)$$
Fourier: $\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$
Laplace: $\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x}$
Inverse Laplace: $\mathcal{L}^{-1}[f](x) = f(\partial_x) \delta(x)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Perturbative expansions

But what if in

$$Z[J] = \int e^{iS[\phi] + i \int J\phi \ d^n x} D[\phi]$$

the action $S[\phi]$ is not suitable to solve the integral or Fourier (or Laplace) transform with our new methods exactly?

And that's the norm of course!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Perturbative expansions

• On the basic level, what if f(x) is too complicated, e.g., for:

$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

Perturbative expansions

• On the basic level, what if f(x) is too complicated, e.g., for:

$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

• Opportunity: Use any regularizations of δ such as sinc or

$$\delta_{\sigma}(x) = (2\pi\sigma)^{-1/2} e^{-x^2/2\sigma}$$

Perturbative expansions

• On the basic level, what if f(x) is too complicated, e.g., for:

$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

• Opportunity: Use any regularizations of δ such as sinc or

$$\delta_{\sigma}(x) = (2\pi\sigma)^{-1/2} e^{-x^2/2\sigma}$$

to obtain, e.g.:

$$\mathcal{F}[f](x) \ dx \approx \sqrt{2\pi} \ f(-i\partial_x) \ \delta_\sigma(x)$$

Perturbative expansions

• On the basic level, what if f(x) is too complicated, e.g., for:

$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

• Opportunity: Use any regularizations of δ such as sinc or

$$\delta_{\sigma}(x) = (2\pi\sigma)^{-1/2} e^{-x^2/2\sigma}$$

to obtain, e.g.:

$$\mathcal{F}[f](x) \ dx \approx \sqrt{2\pi} \ f(-i\partial_x) \ \delta_\sigma(x)$$

• Obtain weak & strong coupling expansions and others...

・ロット 本語 と 本語 と 本語 や キロ と

Perturbative expansions

• On the basic level, what if f(x) is too complicated, e.g., for:

$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

• Opportunity: Use any regularizations of δ such as sinc or

$$\delta_{\sigma}(x) = (2\pi\sigma)^{-1/2} e^{-x^2/2\sigma}$$

to obtain, e.g.:

$$\mathcal{F}[f](x) \ dx \approx \sqrt{2\pi} \ f(-i\partial_x) \ \delta_\sigma(x)$$

- Obtain weak & strong coupling expansions and others...
- Also: applications to deblurring expansion of signals.

|--|

ew methods

Examples

Perturbative expansions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook

Outlook

• What is the full size of the space of functions and distributions to which these methods apply?

Ne

ew methods

Examples

Perturbative expansions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outlook

Outlook

• What is the full size of the space of functions and distributions to which these methods apply?

• Relation to Stoke's theorem?

$$\int_{\Omega} d\omega = \int_{\partial \Omega} \omega$$

14044

ew methods

Examples

Perturbative expansions

Outlook

Outlook

• What is the full size of the space of functions and distributions to which these methods apply?

• Relation to Stoke's theorem?

$$\int_{\Omega} d\omega = \int_{\partial\Omega} \omega$$

• Relation to fermionic integration, a unifying formalism?

٠

New	14044
-----	-------

ew methods

Examples

Perturbative expansions

Outlook

Outlook

• What is the full size of the space of functions and distributions to which these methods apply?

• Relation to Stoke's theorem?

$$\int_{\Omega} d\omega = \int_{\partial\Omega} \omega$$

• Relation to fermionic integration, a unifying formalism?

• A new perspective on integration measures and therefore anomalies in QFT?

Bonus: Examples for Laplace

Recall:

Integration:
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x)$$

Fourier:
$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

Laplace:
$$\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x}$$

Inverse Laplace: $\mathcal{L}^{-1}[f](x) = f(\partial_x) \delta(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook

Examples for Laplace

If we apply the new Laplace transform method

$$\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x}$$

to monomials $f(x) = x^n$ we obtain:

$$L[f](x) = (-\partial_x)^n \frac{1}{x} = \frac{n!}{x^{n+1}}$$

And the monomials form a basis in the function space.

Example for inverse Laplace

Consider a heat kernel trace:

$$h(t)=\sum_n e^{-\lambda_n t}$$

Given h(t), the spectrum $\{\lambda_n\}$ is known to be recoverable via inverse Laplace transform.

Why?

Example for inverse Laplace

Consider a heat kernel trace:

$$h(t) = \sum_{n} e^{-\lambda_n t}$$

Given h(t), the spectrum $\{\lambda_n\}$ is known to be recoverable via inverse Laplace transform.

Why? Using the new inverse Laplace transform method, namely

$$\mathcal{L}^{-1}[f](x) = f(\partial_x) \, \delta(x)$$

this is easy to see:

Example for inverse Laplace

Consider a heat kernel trace:

$$h(t)=\sum_n e^{-\lambda_n t}$$

Given h(t), the spectrum $\{\lambda_n\}$ is known to be recoverable via inverse Laplace transform.

Why? Using the new inverse Laplace transform method, namely

$$\mathcal{L}^{-1}[f](x) = f(\partial_x) \, \delta(x)$$

this is easy to see:

$$\mathcal{L}^{-1}[h](\lambda) = h(\partial_{\lambda}) \,\delta(\lambda)$$

Outlook

Example for inverse Laplace

Consider a heat kernel trace:

$$h(t) = \sum_{n} e^{-\lambda_n t}$$

Given h(t), the spectrum $\{\lambda_n\}$ is known to be recoverable via inverse Laplace transform.

Why? Using the new inverse Laplace transform method, namely

$$\mathcal{L}^{-1}[f](x) = f(\partial_x) \, \delta(x)$$

this is easy to see:

$$\mathcal{L}^{-1}[h](\lambda) = h(\partial_{\lambda}) \,\delta(\lambda) \\ = \sum_{n} e^{-\lambda_{n}\partial_{\lambda}} \,\delta(\lambda) = \sum_{n} \delta(\lambda - \lambda_{n})$$