How to (path) integrate by differentiating

arXiv:1507.04348, appeared in JPA

Achim Kempf

Departments of Applied Mathematics and Physics
and Institute for Quantum Computing, University of Waterloo
and Perimeter Institute

Joint work with D.M. Jackson (UW) and A.H. Morales (UCLA)
The problem

- Integration is hard, harder than differentiation.
The problem

• Integration is hard, harder than differentiation.

• Path integrals (which are also functional Fourier transforms)

\[Z[J] = \int e^{iS[\phi]} + i \int J\phi \, d^n x \, D[\phi] \]

are harder than functional derivatives.
The problem

- Integration is hard, harder than differentiation.

- Path integrals (which are also functional Fourier transforms)
 \[Z[J] = \int e^{iS[\phi]+i \int J\phi \, dn} \, D[\phi] \]
 are harder than functional derivatives.

- If only integration could be expressed in terms of differentiation!
The problem

- Integration is hard, harder than differentiation.

- Path integrals (which are also functional Fourier transforms)

\[Z[J] = \int e^{iS[\phi]} + i \int J\phi \, d^n x \, D[\phi] \]

are harder than functional derivatives.

- If only integration could be expressed in terms of differentiation! **Or can it?**
Overview

• Main message?
 • New, convenient methods for integration and integral transforms such as Fourier and Laplace, using only derivatives.
Overview

• Main message?
 • New, convenient methods for integration and integral transforms such as Fourier and Laplace, using only derivatives.

• Advantages?
 • Often quicker, simpler.
 • Handles distributions well.
 • For cases that are too hard, offers new perturbative approaches.
Overview

• Main message?
 • New, convenient methods for integration and integral transforms such as Fourier and Laplace, using only derivatives.

• Advantages?
 • Often quicker, simpler.
 • Handles distributions well.
 • For cases that are too hard, offers new perturbative approaches.

• Applications to QFT
 • Expresses functional integrations and functional transforms in terms of functional differentiation.
 • Offers new perturbative approaches.
New representations of integration:

\[\int_a^b f(x) \, dx = \lim_{\epsilon \to 0} f(\partial_\epsilon) \frac{e^{\epsilon b} - e^{\epsilon a}}{\epsilon} \]

\[\int_{-\infty}^{\infty} f(x) \, dx = \lim_{\epsilon \to 0^+} (f(\partial_\epsilon) + f(-\partial_\epsilon)) \frac{1}{\epsilon} \]

Compare with:

\[f'(x) = \lim_{\epsilon \to 0} (f(x + \epsilon) - f(x)) \frac{1}{\epsilon} \]
And there are more methods:

Integration:
\[
\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x)
\]
And there are more methods:

Integration: \[\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x) \]

Fourier: \[\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x) \]
And there are more methods:

Integration: \(\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \, \delta(x) \)

Fourier: \(\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \, \delta(x) \)

Laplace: \(\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x} \)
And there are more methods:

Integration: \[\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x) \]

Fourier: \[\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x) \]

Laplace: \[\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x} \]

Inverse Laplace: \[\mathcal{L}^{-1}[f](x) = f(\partial_x) \delta(x) \]
But are they useful?

Recall:

\[\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x) \]
But are they useful?

Recall:
\[
\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i \partial_x) \delta(x)
\]

For example:
\[
\int_{-\infty}^{\infty} \frac{\sin(x)}{x} \, dx = \]

But are they useful?

Recall:
\[
\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x)
\]

For example:
\[
\int_{-\infty}^{\infty} \frac{\sin(x)}{x} \, dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i\partial_x} \delta(x)
\]
But are they useful?

Recall:
\[
\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x)
\]

For example:
\[
\int_{-\infty}^{\infty} \frac{\sin(x)}{x} \, dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i\partial_x} \delta(x)
\]
\[
= \pi \lim_{x \to 0} \left(e^{\partial_x} - e^{-\partial_x} \right) \left(\Theta(x) + c \right)
\]
But are they useful?

Recall:
\[
\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i \partial_x} \delta(x)
\]

For example:
\[
\int_{-\infty}^{\infty} \frac{\sin(x)}{x} \, dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i \partial_x} \delta(x)
\]
\[
= \pi \lim_{x \to 0} \left(e^{\partial_x} - e^{-\partial_x} \right) (\Theta(x) + c)
\]
\[
= \pi \lim_{x \to 0} \left(\Theta(x + 1) + c - \Theta(x - 1) - c \right)
\]
But are they useful?

Recall:

\[\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x) \]

For example:

\[\int_{-\infty}^{\infty} \frac{\sin(x)}{x} \, dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i\partial_x} \delta(x) \]

\[= \pi \lim_{x \to 0} \left(e^{\partial_x} - e^{-\partial_x} \right) (\Theta(x) + c) \]

\[= \pi \lim_{x \to 0} (\Theta(x + 1) + c - \Theta(x - 1) - c) \]

\[= \pi \]
Examples for integration

Similarly, one quickly obtains, e.g.,

\[\int_{-\infty}^{\infty} \frac{\sin^5(x)}{x} \, dx = \frac{3\pi}{8} \]

\[\int_{-\infty}^{\infty} \frac{\sin^2(x)}{x^2} \, dx = \pi \]

\[\int_{-\infty}^{\infty} \frac{(1 - \cos(tx))}{x^2} \, dx = \pi |t| \]

\[\int_{-\infty}^{\infty} x^2 \cos(x) e^{-x^2} \, dx = \sqrt{\pi} e^{-1/4} / 4 \]

e tc ...
Examples for Fourier

Now how much harder is Fourier?
Examples for Fourier

Now how much harder is Fourier?

Fourier transforming is even easier than integrating!
Examples for Fourier

Recall the new methods for integration and Fourier:

Integration: \[\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x) \]
Examples for Fourier

Recall the new methods for integration and Fourier:

Integration: \[
\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x)
\]

Fourier: \[
\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)
\]
Examples for Fourier

Recall the new methods for integration and Fourier:

Integration: \[\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i \partial_x) \delta(x) \]

Fourier: \[\mathcal{F}[f](x) = \sqrt{2\pi} f(-i \partial_x) \delta(x) \]

How are they related?
The zero-frequency value of the Fourier transform is the integral (up to a prefactor of \(\sqrt{2\pi} \)).
Examples for Fourier

For example, for $f(x) = \sin(x)/x$, recall:

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} \, dx = 2\pi \lim_{x \to 0} \frac{1}{2i} \left(e^{\partial_x} - e^{-\partial_x} \right) \frac{1}{-i\partial_x} \delta(x)$$

$$= \pi \lim_{x \to 0} \left(e^{\partial_x} - e^{-\partial_x} \right) (\Theta(x) + c')$$

$$= \pi \lim_{x \to 0} \left(\Theta(x + 1) - \Theta(x - 1) \right)$$

$$= \pi$$

By not taking the limit and by dividing by $\sqrt{2\pi}$, we obtain immediately:

$$\mathcal{F}[f](x) = \sqrt{\pi/2} \left(\Theta(x + 1) - \Theta(x - 1) \right)$$
Proof of the Fourier formula

Why does this work?
Proof of the Fourier formula

The claim is:

\[\mathcal{F}[f](x) = \sqrt{2\pi} \ f(-i\partial_x) \ \delta(x) \]

Let us apply this to a plane wave: \(f(x) = e^{ixy} \).

We obtain the right answer:

\[
\mathcal{F}[f](x) = \sqrt{2\pi} \ e^{y\partial_x} \ \delta(x) \\
= \sqrt{2\pi} \ \delta(x + y)
\]

And the plane waves from a basis of the function space.
What is going on, intuitively?

\[
\int_{-\infty}^{\infty} f(x) \, dx = 2\pi \delta(i \partial_x) f(x)
\]
What is going on, intuitively?

\[\int_{-\infty}^{\infty} f(x) \, dx = 2\pi \delta(i\partial_x) \, f(x) \]

How does it work?

Regulate, e.g., this way:

\[
\delta(x) = \lim_{\sigma \to 0} \left(2\pi\sigma \right)^{-1/2} e^{-x^2/2\sigma} \\
\int_{-\infty}^{\infty} f(x) \, dx = 2\pi \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi\sigma}} e^{\partial_x^2/2\sigma} f(x)
\]
What is going on, intuitively?

\[\int_{-\infty}^{\infty} f(x) \, dx = 2\pi \, \delta(i \partial_x) \, f(x) \]

How does it work?

Regulate, e.g., this way: \(\delta(x) = \lim_{\sigma \to 0} (2\pi \sigma)^{-1/2} e^{-x^2/2\sigma} \)

\[\int_{-\infty}^{\infty} f(x) \, dx = 2\pi \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi \sigma}} \, e^{\partial_x^2/2\sigma} \, f(x) \]

Integration from asymptotics of heat flow!
Perturbative expansions

In QFT, we’d like to apply the new methods, e.g.:

Integration:
\[
\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x)
\]

Fourier:
\[
\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)
\]

Laplace:
\[
\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x}
\]

Inverse Laplace:
\[
\mathcal{L}^{-1}[f](x) = f(\partial_x) \delta(x)
\]
But what if in

\[Z[J] = \int e^{iS[\phi] + i \int J \phi \, d^n x} D[\phi] \]

the action \(S[\phi] \) is not suitable to solve the integral or Fourier (or Laplace) transform with our new methods exactly?

And that’s the norm of course!
Perturbative expansions

• On the basic level, what if \(f(x) \) is too complicated, e.g., for:

\[
\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)
\]
Perturbative expansions

• On the basic level, what if \(f(x) \) is too complicated, e.g., for:

\[
\mathcal{F}[f](x) = \sqrt{2\pi} \ f(-i\partial_x) \ \delta(x)
\]

• Opportunity: Use any regularizations of \(\delta \) such as sinc or

\[
\delta_\sigma(x) = (2\pi \sigma)^{-1/2} e^{-x^2/2\sigma}
\]

• Also: applications to deblurring expansion of signals.
Perturbative expansions

- On the basic level, what if $f(x)$ is too complicated, e.g., for:

$$
\mathcal{F}[f](x) = \sqrt{2\pi} \ f(-i\partial_x) \ \delta(x)
$$

- Opportunity: Use any regularizations of δ such as sinc or

$$
\delta_\sigma(x) = (2\pi\sigma)^{-1/2} e^{-x^2/2\sigma}
$$

to obtain, e.g.:

$$
\mathcal{F}[f](x) \ dx \approx \sqrt{2\pi} \ f(-i\partial_x) \ \delta_\sigma(x)
$$
Perturbative expansions

• On the basic level, what if \(f(x) \) is too complicated, e.g., for:

\[
\mathcal{F}[f](x) = \sqrt{2\pi} \ f(-i\partial_x) \ \delta(x)
\]

• Opportunity: Use any regularizations of \(\delta \) such as sinc or

\[
\delta_\sigma(x) = (2\pi\sigma)^{-1/2} e^{-x^2/2\sigma}
\]

to obtain, e.g.:

\[
\mathcal{F}[f](x) \ dx \approx \sqrt{2\pi} \ f(-i\partial_x) \ \delta_\sigma(x)
\]

• Obtain weak & strong coupling expansions and others...
Perturbative expansions

• On the basic level, what if $f(x)$ is too complicated, e.g., for:

$$\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x)$$

• Opportunity: Use any regularizations of δ such as sinc or

$$\delta_\sigma(x) = (2\pi\sigma)^{-1/2} e^{-x^2/2\sigma}$$

to obtain, e.g.:

$$\mathcal{F}[f](x) \, dx \approx \sqrt{2\pi} f(-i\partial_x) \delta_\sigma(x)$$

• Obtain weak & strong coupling expansions and others...

• Also: applications to deblurring expansion of signals.
Outlook

• What is the full size of the space of functions and distributions to which these methods apply?
Outlook

- What is the full size of the space of functions and distributions to which these methods apply?

- Relation to Stoke’s theorem?

\[\int_{\Omega} d\omega = \int_{\partial \Omega} \omega \]
Outlook

• What is the full size of the space of functions and distributions to which these methods apply?

• Relation to Stoke’s theorem?

\[\int_{\Omega} d\omega = \int_{\partial \Omega} \omega \]

• Relation to fermionic integration, a unifying formalism?
Outlook

- What is the full size of the space of functions and distributions to which these methods apply?

- Relation to Stoke’s theorem?

\[\int_{\Omega} d\omega = \int_{\partial\Omega} \omega \]

- Relation to fermionic integration, a unifying formalism?

- A new perspective on integration measures and therefore anomalies in QFT?

Bonus: Examples for Laplace

Recall:

Integration: \[\int_{-\infty}^{\infty} f(x) \, dx = \lim_{x \to 0} 2\pi f(-i\partial_x) \delta(x) \]

Fourier: \[\mathcal{F}[f](x) = \sqrt{2\pi} f(-i\partial_x) \delta(x) \]

Laplace: \[\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x} \]

Inverse Laplace: \[\mathcal{L}^{-1}[f](x) = f(\partial_x) \delta(x) \]
Examples for Laplace

If we apply the new Laplace transform method

\[\mathcal{L}[f](x) = f(-\partial_x) \frac{1}{x} \]

to monomials \(f(x) = x^n \) we obtain:

\[L[f](x) = (-\partial_x)^n \frac{1}{x} = \frac{n!}{x^{n+1}} \]

And the monomials form a basis in the function space.
Example for inverse Laplace

Consider a heat kernel trace:

\[h(t) = \sum_{n} e^{-\lambda_n t} \]

Given \(h(t) \), the spectrum \(\{\lambda_n\} \) is known to be recoverable via inverse Laplace transform.

Why?
Example for inverse Laplace

Consider a heat kernel trace:

$$h(t) = \sum_n e^{-\lambda_n t}$$

Given $h(t)$, the spectrum $\{\lambda_n\}$ is known to be recoverable via inverse Laplace transform.

Why? Using the new inverse Laplace transform method, namely

$$\mathcal{L}^{-1}[f](x) = f(\partial_x) \delta(x)$$

this is easy to see:
Example for inverse Laplace

Consider a heat kernel trace:

\[h(t) = \sum_n e^{-\lambda_n t} \]

Given \(h(t) \), the spectrum \(\{\lambda_n\} \) is known to be recoverable via inverse Laplace transform.

Why? Using the new inverse Laplace transform method, namely

\[\mathcal{L}^{-1}[f](x) = f(\partial_x) \delta(x) \]

this is easy to see:

\[\mathcal{L}^{-1}[h](\lambda) = h(\partial_\lambda) \delta(\lambda) \]
Example for inverse Laplace

Consider a heat kernel trace:

\[h(t) = \sum_{n} e^{-\lambda_n t} \]

Given \(h(t) \), the spectrum \(\{\lambda_n\} \) is known to be recoverable via inverse Laplace transform.

Why? Using the new inverse Laplace transform method, namely

\[\mathcal{L}^{-1}[f](x) = f(\partial_x) \delta(x) \]

this is easy to see:

\[\mathcal{L}^{-1}[h](\lambda) = h(\partial_\lambda) \delta(\lambda) = \sum_{n} e^{-\lambda_n \partial_\lambda} \delta(\lambda) = \sum_{n} \delta(\lambda - \lambda_n) \]