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The problem

• Integration is hard, harder than differentiation.

• Path integrals (which are also functional Fourier transforms)

Z [J] =

∫
e iS[φ]+i

∫
Jφ dnxD[φ]

are harder than functional derivatives.

• If only integration could be expressed in terms of
differentiation! Or can it?
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Overview

• Main message?
• New, convenient methods for integration and integral

transforms such as Fourier and Laplace, using only derivatives.

• Advantages?
• Often quicker, simpler.
• Handles distributions well.
• For cases that are too hard, offers new perturbative

approaches.

• Applications to QFT
• Expresses functional integrations and functional transforms in

terms of functional differentiation.
• Offers new perturbative approaches.
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New representations of integration:

∫ b

a
f (x) dx = lim

ε→0
f (∂ε)

eεb − eεa

ε

∫ ∞
−∞

f (x) dx = lim
ε→0+

(f (∂ε) + f (−∂ε))
1

ε

Compare with:

f ′(x) = lim
ε→0

(f (x + ε)− f (x))
1

ε
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And there are more methods:

Integration:

∫ ∞
−∞

f (x) dx = lim
x→0

2π f (−i∂x) δ(x)

Fourier: F [f ](x) =
√

2π f (−i∂x) δ(x)

Laplace: L[f ](x) = f (−∂x)
1

x

Inverse Laplace: L−1[f ](x) = f (∂x) δ(x)
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But are they useful ?

Recall: ∫ ∞
−∞

f (x) dx = lim
x→0

2π f (−i∂x) δ(x)

For example:

∫ ∞
−∞

sin(x)

x
dx = 2π lim

x→0

1

2i

(
e∂x − e−∂x

) 1

−i∂x
δ(x)

= π lim
x→0

(
e∂x − e−∂x

)
(Θ(x) + c)

= π lim
x→0

(Θ(x + 1) + c −Θ(x − 1)− c)

= π
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Examples for integration

Similarly, one quickly obtains, e.g.,

∫ ∞
−∞

sin5(x)

x
dx = 3π/8

∫ ∞
−∞

sin2(x)

x2
dx = π

∫ ∞
−∞

(1− cos(tx))

x2
dx = π|t|

∫ ∞
−∞

x2 cos(x) e−x
2
dx =

√
πe−1/4/4

etc ...
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Examples for Fourier

Now how much harder is Fourier?

Fourier transforming is even easier than integrating!
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Examples for Fourier

Recall the new methods for integration and Fourier:

Integration:

∫ ∞
−∞

f (x) dx = lim
x→0

2π f (−i∂x) δ(x)

Fourier: F [f ](x) =
√

2π f (−i∂x) δ(x)

How are they related?
The zero-frequency value of the Fourier transform is the
integral (up to a prefactor of

√
2π).
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Examples for Fourier

For example, for f (x) = sin(x)/x , recall:

∫ ∞
−∞

sin(x)

x
dx = 2π lim

x→0

1

2i

(
e∂x − e−∂x

) 1

−i∂x
δ(x)

= π lim
x→0

(
e∂x − e−∂x

) (
Θ(x) + c ′

)
= π lim

x→0
(Θ(x + 1)−Θ(x − 1))

= π

By not taking the limit and by dividing by
√

2π, we obtain
immediately:

F [f ](x) =
√
π/2 (Θ(x + 1)−Θ(x − 1))
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Proof of the Fourier formula

Why does this work?
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Proof of the Fourier formula

The claim is:
F [f ](x) =

√
2π f (−i∂x) δ(x)

Let us apply this to a plane wave: f (x) = e ixy .

We obtain the right answer:

F [f ](x) =
√

2π ey∂x δ(x)

=
√

2π δ(x + y)

And the plane waves from a basis of the function space.
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What is going on, intuitively?

∫ ∞
−∞

f (x) dx = 2π δ(i∂x) f (x)

How does it work?

Regulate, e.g., this way: δ(x) = limσ→0(2πσ)−1/2e−x
2/2σ

∫ ∞
−∞

f (x) dx = 2π lim
σ→0

1√
2πσ

e∂
2
x/2σ f (x)

Integration from asymptotics of heat flow !
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Perturbative expansions

In QFT, we’d like to apply the new methods, e.g.:

Integration:

∫ ∞
−∞

f (x) dx = lim
x→0

2π f (−i∂x) δ(x)

Fourier: F [f ](x) =
√

2π f (−i∂x) δ(x)

Laplace: L[f ](x) = f (−∂x)
1

x

Inverse Laplace: L−1[f ](x) = f (∂x) δ(x)
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Perturbative expansions

But what if in

Z [J] =

∫
e iS[φ]+i

∫
Jφ dnxD[φ]

the action S [φ] is not suitable to solve the integral or Fourier (or
Laplace) transform with our new methods exactly?

And that’s the norm of course!
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Perturbative expansions

• On the basic level, what if f (x) is too complicated, e.g., for:

F [f ](x) =
√

2π f (−i∂x) δ(x)

• Opportunity: Use any regularizations of δ such as sinc or

δσ(x) = (2πσ)−1/2e−x
2/2σ

to obtain, e.g.:

F [f ](x) dx ≈
√

2π f (−i∂x) δσ(x)

• Obtain weak & strong coupling expansions and others...

• Also: applications to deblurring expansion of signals.
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Outlook

• What is the full size of the space of functions and
distributions to which these methods apply?

• Relation to Stoke’s theorem?∫
Ω
dω =

∫
∂Ω
ω

• Relation to fermionic integration, a unifying formalism?

• A new perspective on integration measures and therefore
anomalies in QFT?



Overview New methods Examples Perturbative expansions Outlook

Outlook

• What is the full size of the space of functions and
distributions to which these methods apply?

• Relation to Stoke’s theorem?∫
Ω
dω =

∫
∂Ω
ω

• Relation to fermionic integration, a unifying formalism?

• A new perspective on integration measures and therefore
anomalies in QFT?



Overview New methods Examples Perturbative expansions Outlook

Outlook

• What is the full size of the space of functions and
distributions to which these methods apply?

• Relation to Stoke’s theorem?∫
Ω
dω =

∫
∂Ω
ω

• Relation to fermionic integration, a unifying formalism?

• A new perspective on integration measures and therefore
anomalies in QFT?



Overview New methods Examples Perturbative expansions Outlook

Outlook

• What is the full size of the space of functions and
distributions to which these methods apply?

• Relation to Stoke’s theorem?∫
Ω
dω =

∫
∂Ω
ω

• Relation to fermionic integration, a unifying formalism?

• A new perspective on integration measures and therefore
anomalies in QFT?



Overview New methods Examples Perturbative expansions Outlook

Bonus: Examples for Laplace

Recall:

Integration:

∫ ∞
−∞

f (x) dx = lim
x→0

2π f (−i∂x) δ(x)

Fourier: F [f ](x) =
√

2π f (−i∂x) δ(x)

Laplace: L[f ](x) = f (−∂x)
1

x

Inverse Laplace: L−1[f ](x) = f (∂x) δ(x)
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Examples for Laplace

If we apply the new Laplace transform method

L[f ](x) = f (−∂x)
1

x

to monomials f (x) = xn we obtain:

L[f ](x) = (−∂x)n
1

x
=

n!

xn+1

And the monomials form a basis in the function space.
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Example for inverse Laplace
Consider a heat kernel trace:

h(t) =
∑
n

e−λnt

Given h(t), the spectrum {λn} is known to be recoverable via
inverse Laplace transform.

Why?

Using the new inverse Laplace transform method, namely

L−1[f ](x) = f (∂x) δ(x)

this is easy to see:

L−1[h](λ) = h(∂λ) δ(λ)

=
∑
n

e−λn∂λ δ(λ) =
∑
n

δ(λ− λn)
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