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Abstract The most notable problems of General Relativity (GR), such as the oc-
currence of singularities and the information paradox, were initially found on the
background provided by Schwarzschild’s solution. The reason is that this solution
has singularities, widely regarded as a big problem of GR. While the event horizon
singularity can be removed by moving to non-singular coordinates, not the same is
true about the r = 0 singularity. However, I will present coordinates which make the
metric finite and analytic at the singularity r = 0. The metric becomes degenerate at
r = 0, so the singularity still exists, but it is of a type that can be described geometri-
cally by referring to finite quantities only. Also, the topology of the causal structure
is shown to remain intact, and the solution is globally hyperbolic. This suggests a
possible solution to the black hole information paradox, in the framework of GR.
As a side effect, the Schwarzschild singularity belongs to a class of singularities ac-
companied by dimensional reduction effects, which are hoped to cure the infinities
in perturbative Quantum Gravity.

1 Extending the Schwarzschild solution beyond the singularity

As it is well known, the Schwarzschild solution of Einstein’s equation is

ds2 =−(1− 2m
r
)dt2 +(1− 2m

r
)−1dr2 + r2dσ

2, (1)

where
dσ

2 = dθ
2 + sin2

θdφ
2 (2)
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is the metric of the unit sphere S2, m the mass of the body, and the units are chosen
such that c = 1 and G = 1 (see for example [1], page 149). It represents a spherically
symmetric static and electrically neutral black hole. The metric (1) has singularities
at r = 0 and r = 2m, which puzzled Schwarzschild, who decided to replace the
coordinate r with R = r−2m, so that the only singularity is in the new origin R = 0.

However, there are other coordinates for the Schwarzschild black hole, which
remove the singularity r = 2m, for example the Eddington-Finkelstein coordinates
[2, 3]. This shows that the event horizon singularity is due to the coordinates, which
themselves are singular.

Unfortunately, changing the coordinates cannot be used to remove the singularity
r = 0, as can be seen from the fact that the Kretschmann scalar RabcdRabcd is infinite
at r = 0 in any coordinates.

Fortunately, coordinate transformations can remove “half” of the singularity, so
that the metric gab is made finite and extends analytically beyond the singularity [4].

Theorem 1. The Schwarzschild metric can be extended analytically at r = 0.

Proof. To see this, let us apply the coordinate transformation{
r = τ2

t = ξ τT (3)

where T ≥ 2 is an integer. Then, the components of the Jacobian matrix are

∂ r
∂τ

= 2τ,
∂ r
∂ξ

= 0,
∂ t
∂τ

= T ξ τ
T−1,

∂ t
∂ξ

= τ
T . (4)

In the new coordinates, the components of the metric metric become

gττ =−
4τ4

2m− τ2 +T 2
ξ

2(2m− τ
2)τ2T−4 (5)

gτξ = T ξ (2m− τ
2)τ2T−3 (6)

gξ ξ = (2m− τ
2)τ2T−2 (7)

(8)

and its determinant
detg =−4τ

2T+2. (9)

Then, the four-metric becomes

ds2 =− 4τ4

2m− τ2 dτ
2 +(2m− τ

2)τ2T−4(T ξ dτ + τdξ )2 + τ
4dσ

2, (10)

which remains finite and is in fact analytic at r = 0. ut

Given that T can be any integer T ≥ 2, we have obtained an infinite number of
solutions. However, a unique solution among them has special properties, as I will
explain in the following.
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2 The most regular extension

From geometric point of view, the problem with singular metrics is the following.
In semi-Riemannian geometry (where the metric is regular), one can define in a nat-
ural way a unique connection which preserves the metric and is torsionless. Then,
we can define covariant derivatives for tensor fields, which enable us to write field
equations. Also, the curvature tensor, needed for the Einstein equation, can be de-
fined and is unique. But if the metric becomes singular, there is no way to define
a covariant derivative and curvature tensor by usual means. The reason is that both
the metric tensor gab and its reciprocal gab are used in the construction of these ob-
jects. When gab has infinite components – as it happens in the Schwarzschild metric
(1), the connection and curvature can no longer be defined. Even if all of the com-
ponents of gab are finite, but it is degenerate (its determinant vanishes), gab is not
defined or is singular, and one cannot define the connection and curvature. If the
metric is degenerate with constant signature, Kupeli showed one can define a sort
of connection and curvature, but his construction is not invariant and not unique,
relying on choosing at each point a subspace of the tangent space complementary
to the isotropic subspace [5, 6]. But in [7, 8] it was shown that we can do this in an
invariant way, and it also works for a large class of metrics with variable signature
(which are the ones needed in GR). For this kind of metrics (named semi-regular in
[7]) the covariant derivatives can be defined for a large class of differential forms.
Also, a differential operator which plays the same role as the covariant derivative
can be defined for vector fields. It turns out that for semi-regular metrics we can
also define the Riemann curvature tensor Rabcd (although Ra

bcd usually is still sin-
gular). Moreover, the Einstein equation can be cast in a form which has the same
content outside the singularities, but also works at semi-regular singularities [7, 9].

If the spacetime events where the metric is regular form a dense subset of the
spacetime, the metric is semi-regular if the contractions gstΓabsΓcdt are smooth [7],
where Γabc =

1
2 (∂agbc + ∂bgca− ∂cgab) are Christoffel’s symbols of the first kind.

The reciprocal metric gst becomes infinite at the singularity, but gstΓabsΓcdt remains
smooth. For a general and invariant definition of semi-regular metrics see [7].

Among the solutions (10), there is only one with semi-regular metric [4].

Theorem 2. The solution (10) can be extended analytically so that the singularity
at r = 0 is semi-regular, if and only if T = 4.

Proof. In the coordinate system (3), Christoffel’s symbols of the first kind Γabc are
also smooth. Since at r = 0 the determinant of the metric vanishes, gst is singular.
But we can find T so that ΓabsΓcdt compensates this singularity and the contractions
gstΓabsΓcdt are smooth.

The reciprocal metric has the components

gττ =−1
4
(2m− τ

2)τ−4 (11)

gτξ =
1
4

T ξ (2m− τ
2)τ−5 (12)
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gξ ξ =
τ−2T+2

2m− τ2 −
1
4

T 2
ξ

2(2m− τ
2)τ−6 (13)

The partial derivatives of the coefficients of the metric are

∂τ gττ = 8
τ5−4mτ3

(2m− τ2)2 +2T 2(2T −4)mξ
2
τ

2T−5−T 2(2T −2)ξ 2
τ

2T−3, (14)

∂τ gτξ = 2T (2T −3)mξ τ
2T−4−T (2T −1)ξ τ

2T−2, (15)

∂τ gξ ξ = 2m(2T −2)τ2T−3−2T τ
2T−1, (16)

∂ξ gττ = 2T 2
ξ (2m− τ

2)τ2T−4, (17)

∂ξ gτξ = T (2m− τ
2)τ2T−3, (18)

∂ξ gξ ξ = 0. (19)

From equations (14-19) we find that the least power of τ in the partial derivatives of
the metric is min(3,2T −5). From the equations (11-13), the least power of τ in the
reciprocal metric is min(−6,−2T +2). Hence, the least power of τ in gstΓabsΓcdt is
non-negative only if

−1−2T +3min(3,2T −5)≥ 0. (20)

Therefore gstΓabsΓcdt are smooth only for T = 4, and the metric in two dimensions
(τ,ξ ) is semi-regular. The metric in all four dimensions is the warped product be-
tween the two-dimensional space (τ,ξ ) and the sphere S2, with warping function
τ2, which according to [10], is semi-regular. ut

The geodesics of the extended solution are given by

dξ

dτ
=−4ξ

τ
± 2

(2m− τ2)τ
, (21)

which become tangent to the hypersurface τ = 0. The causal structure is represented
in fig. 1. We can see that, although the lightcones at events from the singularity are
flattened, they have the same topology as those outside the singularity [11].

Fig. 1 The causal structure of
the extended Schwarzschild
solution. The lightcones at the
singularity are flattened, but
they have the same topology
as the lightcones outside the
singularity.
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3 Globally hyperbolic spacetimes with black holes

The analytic extension of the Schwarzschild metric from equation (10) is symmetric
at the time reversal τ 7→ −τ , which means that it extends beyond the singularity as a
white hole. If we modify the Schwarzschild solution to describe a black hole which
forms by gravitational collapse, for example as in the Oppenheimer-Snyder model
[12], then the solution extends beyond the singularity as an evaporating black hole
(fig. 2 B). It is interesting that, while one would normally expect that spacetime ends
at the singularity (fig. 2 A), solution (10) does not behave like this, and is compatible
with globally hyperbolic spacetimes like that in fig. 2 B [13].

Fig. 2 A. Standard evap-
orating black hole, whose
singularity destroys the infor-
mation. B. Evaporating black
hole extended through the
singularity preserves informa-
tion.

In order for information to be preserved, this is not enough. The field equations
normally involve covariant derivatives, which are not defined in general when the
metric is degenerate. But the solution (10) with T = 4 allows us to define covariant
derivatives and even to rewrite the Einstein equation without infinities [7, 9]. What
about other fields? In [14] it is shown how we can write the Maxwell and Yang-
Mills equations when the metric is semi-regular. There are still some open problems
related to this, in particular how to formulate the Dirac equation for semi-regular
metrics.

4 Implications of singularities to Quantum Gravity

The dimension of Newton’s constant is 2−D = −2 in mass units, where D is the
dimension of spacetime. This makes Quantum Gravity (QG) perturbatively non-
renormalizable even without matter, at two loops [15, 16], by requiring an infinite
number of higher derivative counterterms, with their coupling constants. Various
approaches to make QG perturbatively renormalizable indicate that in the UV limit
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a dimensional reduction to two dimensions takes place (for a review, see [17]), either
as a consequence of other hypotheses, or by being directly postulated to obtain the
desired result.

At a semi-regular singularity, the metric becomes degenerate, behaving like a
lower-dimension metric. Moreover, the Weyl curvature tensor also becomes lower-
dimensional, and for this reason it vanishes [18]. Such effects happen at the singu-
larities of the Schwarzschild, but also of the charged and rotating black holes [8].
In particular they accompany pointlike particles. Some of the dimensional reduction
effects postulated in several approaches to QG follow naturally at singularities [19].
This suggests that when we use perturbative methods, by taking into consideration
the corrections introduced by the singularities, the desired dimensional reduction
occurs naturally.
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