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@ Classical field theory with variable space-time

© Extended Lagrangians in field theory
@ Example: Einstein-Hilbert Lagrangian

© Extended covariant Hamiltonians in field theory

@ Extended canonical transformations

© General Relativity as an extended canonical gauge theory
@ Conclusions and Outlook

The talk is based on a paper published in Phys. Rev. D 91, 085030 (2015)
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Rationale

General Relativity should obey the following principles:

o
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Action Principle: The fundamental laws of nature should follow from
action principles.
General Principle of Relativity: The form of the action principle —
and hence the resulting field equations — should be the same in any
frame of reference.
~ The change of reference frame must constitute an
extended canonical transformation, which by construction
maintains the form of the action principle.
For a system of tensor fields, the affine connection coefficients I'O‘W
turn out to be the relevant gauge quantities.
This confirms Einstein's conclusion: “...the essential achievement of
general relativity is only indirectly connected with the introduction of
a Riemannian metric. The directly relevant conceptual element is the
‘displacement field" ", ..."
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Extended action principle, extended Lagrangian

Generalized action functional for dynamical space-time: treat 9x”/Jy* as
dynamical variable in the Lagrangian £

Extended action principle
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Classical field theory with variable space-time

Extended action principle, extended Lagrangian

Generalized action functional for dynamical space-time: treat 9x”/Jy* as
dynamical variable in the Lagrangian £

Extended action principle

Oa ! !
§= Wﬁ(%%))daA&% 05 =0, bau|,p =0x"|,5 =0

with y* the new set of independent variables and x” = x"(y)

o< )

20 ... &

A= ], daA—AQL———l#O
3X3 8X3 a(yvvy)

The integrand defines the extended Lagrangian £, = LdetA

£e<au(y)’ 9a,(y) 8X”(Y)> _ E(au(y), dy“ 6au_(y)> det A J

ayr 7 Oyv Ox? Oy~




Example: Einstein-Hilbert Lagrangian
Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian
R 1

Lern = (Lr + Ly) detA, Lr=
EH = (Lr+ L) de R= 5.~ o

_ g,ul/ R,u,lu

wherein R = gt R, denotes the Riemann curvature scalar, « [Lenght]? a
coupling constant, and Ly the conventional Lagrangian of a given system.
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Example: Einstein-Hilbert Lagrangian
Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

R 1
g = — ,LLI/R
2k o2& T
wherein R = gt R, denotes the Riemann curvature scalar, « [Lenght]? a

coupling constant, and Ly the conventional Lagrangian of a given system.

Lern = (Lr + L) det A, Lr

The Ricci tensor R, = R”lm,, is the contraction 1 = 3 of the

Riemann-Christoffel curvature tensor

orn or’
_ i e A A
nﬂﬁy =28 " oy +T Wr’im_r 18




Extended Lagrangians in field theory Example: Einstein-Hilbert Lagrangian

Example: Einstein-Hilbert Lagrangian
The Einstein equations follow from the extended Lagrangian

R 1
Ee’EH = (ER + ‘CM)detA') £R = ﬂ - ﬂg,UJVRIJJlM
wherein R = g"”R,,,, denotes the Riemann curvature scalar, [Lenght]z a

coupling constant, and Ly the conventional Lagrangian of a given system.
The Ricci tensor R, = Rnunv is the contraction 1 = 3 of the
Riemann-Christoffel curvature tensor

_ 8F’7W 8rnuﬁ

uBv dyPB - dy" +T ;wr A8 T r uﬁr Av*

In the Palatini approach, the metric and the connection coefficients are a
priori independent quantities, hence the Euler-Lagrange equations are here
OLegn 0 O0Legn  OLepn _

0.




Extended covariant Hamiltonians in field theory

Extended covariant Hamiltonian

We define the p*” and the tensor densities p*¥ = p*” det A as the dual
quantities of the derivatives of the fields according to

oL 0L,

P (x) = W’ P (y) = W-
XV yH
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Extended covariant Hamiltonian

We define the p*” and the tensor densities p*¥ = p*” det A as the dual
quantities of the derivatives of the fields according to

) oc » ILe
p* (X):a(@g“(x))’ P (y) = W-
XV yH

Similarly, the two-point tensor t,* defines the dual quantity to dx”/dy*
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Extended covariant Hamiltonians in field theory

Extended covariant Hamiltonian

We define the p*” and the tensor densities p*¥ = p*” det A as the dual
quantities of the derivatives of the fields according to

) oc » ILe
p* (X):a(@g“(x))’ P (y) = W-
XV yH

Similarly, the two-point tensor t,* defines the dual quantity to dx”/dy*
0L,
a v
2 (57)

An extended Lagrangian L, = Ldet A is thus Legendre-transformed to the

e

Extended Hamiltonian .

aaaﬁ ~ ﬁaxa
H=p" ooa — Lo HMe=THdetA—i, 3P
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dy™ oy™
0A oX
_ Pﬁa B «a ! 4
) . l Dy dya ’He] d

This condition implies that the integrands may differ by the divergence of
a vector field F1* with 6F} |srr =0
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Form-invariance for the extended action principle

The extended action principle must be maintained for extended canonical
transformations that map a, — A, pH* — PP, xt — XH, E 1 T M

Condition for extended canonical transformations

Oy« oy™
0A oX
_ Pﬁa B «a ! 4
) . l Dy dya ’He] d

This condition implies that the integrands may differ by the divergence of
a vector field F1* with 6F} |srr =0

dag .. ., OxP ~o 0Ag o OXP OF
pro _ge gy = ppelB e —H L
P 8}/0‘ 8ya e 8ya B aya et aya
JF1* may be defined to depend on ag, Ag, x”, and X" only.
~~ This defines the extended generating function of type Fi".




Extended canonical transformations

Transformation rules for a generating function F}'

The divergence of a vector function F{*(ag, Ag, x", X”) is

OFY  OFX dag OFP0Ag  OFP0xP  OFp 0XP

Dye ~ as Oyo | 9A; Oyo | OxP ya | 9XP Oy
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Transformation rules for a generating function F}'
The divergence of a vector function F{*(ag, Ag, x", X”) is

OFy _OF; 03y OFp 0A;  OF¢ 0xP  0F; oX?
dy®  Oag Oy®  0Az dy® ~ OxP dy> = OXP gy’

Comparing the coefficients with the integrand condition yields the

Transformation rules for a generating function F}'

ou _ OF1  pp
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Transformation rules for a generating function F}'
The divergence of a vector function F{*(ag, Ag, x", X”) is

OFy _OF; 03y OFp 0A;  OF¢ 0xP  0F; oX?
dy®  Oag Oy®  0Az dy® ~ OxP dy> = OXP gy’

Comparing the coefficients with the integrand condition yields the

Transformation rules for a generating function F}'

sou _ 07 pau _ O

OFy =, OF
aag ’ 3/\5

TH—_ =
T oxv’ Y oxv’

H, = He.

The transformation rule for the extended Hamiltonian translates into the
following rule for the given covariant Hamiltonian H

G . 50x”
H'detN — T, °P—— :’Hdet/\—ta'ga—yﬁ.

(e} ayg



Extended generating function of type F%
By means of a Legendre transformation

F(ag, PP x", T, 1) = F{(ag, Ag, x¥, XV) + AgPPe — XP :I'ﬁo‘,
an equivalent set of transformation rules is encountered, hence the

Rules for an extended generating function F5

sou_ OF%
825 ’

OFf wyu_ OFF sasu_  OFF

=2 9 ) ) Hé = He
opsv’ Ox¥ T,

(07

goL =




Extended generating function of type F4
By means of a Legendre transformation

F5'(ag, PAv xv. T, = Fi'(ag, Ag, x", X") + Agﬁﬁo‘ - XP :I'ﬁo‘,
an equivalent set of transformation rules is encountered, hence the

Rules for an extended generating function F5

OFY OFy . OFY OFY
por = 22 b 222 FH— T2 xagh !
p 825 ) B 1% aPﬂy ) 17 aXV ) v aTa H He

There are 6 symmetry relations for F4" of the type

opor  PFY L 0Ag ot"  PFRy 0xe
OPev " DagoPov Y dagT  oT,v oxPaT,r TV OxP’

~> Note that all quantities in the derivations must refer to the same
space-time event in order to be well-defined.



General Relativity as an extended canonical gauge theory

Coordinate transformation of a Proca field

Under a coordinate transformation x” — X", a vector field a, transforms as

Oxs

Au(X) = as(X)m~
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Under a coordinate transformation x” — X", a vector field a, transforms as
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OXH’

Regarded as a canonical transformation, the mapping of the vector field is
generated by

Au(X) = a¢(x)

~ ~ Ox¢ Oyt
L\ T mpa of - 7
FE() = = Ta 0 () + PO(X) aelx) 55
We thus get the additional canonical transformation rules
OxH Ox¥

B (x) = P(X)
X = h%(x)

IX 9XB

A fo'
0?xE 9X* oy n :,_auai.
OXOXA Oxv 9XB oxv

£/ = —P(X) ag(x)



General Relativity as an extended canonical gauge theory

Coordinate transformation of a Proca field

Under a coordinate transformation x” — X", a vector field a, transforms as
Ox¢

OXH’

Regarded as a canonical transformation, the mapping of the vector field is
generated by

Au(X) = a¢(x)

~ ~ Ox¢ Oyt
L) — T Hpo af i A
F(y) = =T "h*(x)+ P (X)ag(x)aXa 5XB
We thus get the additional canonical transformation rules

Ox* OxY
OX> oXP

B (x) = PA(X)
X% = h*(x)

A fo'

0?xE 9X* oy n :,_auai.

OXOXA Oxv 9XB oxv

The last rule yields the transformation of the Hamiltonian.

£/ = —P(X) ag(x)



General Relativity as an extended canonical gauge theory

Transformation rule for the Hamiltonians

According to the general prescription, the Hamiltonians transform as

?xs  ax*
OX20XB Ox¢ "

~~ The Hamiltonians do not maintain their form if 92x¢/9X*9X5 # 0.

H'det N = Hdet A + PP(X)A\(X)
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~~ The Hamiltonians do not maintain their form if 92x¢/9X*9X5 # 0.
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H, det N = PP (X) AN(X) T 45(X), H, det A = p*°(x) aA(x)ﬁﬁ(X)
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2°x¢  ax*

IXOXB Ix& "

~~ The Hamiltonians do not maintain their form if 92x¢/9X*9X5 # 0.

In order to find the desired form-invariant Hamiltonian, we must formally
introduce “gauge Hamiltonians” H, as

H' det N = H det A + PYP(X)Ax(X)

H, det N = PP (X) AN(X) T 45(X), H, det A = p*°(x) aA(x)ﬁﬁ(X)

The amended Hamiltonian (# + #,) det A is then form-invariant, provided
that the formally introduced gauge coefficients transform as

Mas(X) =7 (x)

Ox" Ox) oxX* n 9?x¢ oXA
0Xa 9XB gxk = 9X29XB Ox¢

~» The gauge coefficients are treated as external “fields”.
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General Relativity as an extended canonical gauge theory

Treating the gauge coefficients F/\aﬁ as internal “fields”

We include the description of the dynamics of the gauge coefficients by
incorporating their transformation rule into the CT's generating function

_ N dyH OX" Ox' Ox X" 92xk
T T ag k.
o =R e @ ( i Dxk 9X* OXE T Oxk OXOOXE )

with @no‘f“ the canonical conjugates of the gauge fields I'"O[£ and g1 a
dimensionless coupling constant.
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General Relativity as an extended canonical gauge theory

Treating the gauge coefficients F/\aﬁ as internal “fields”

We include the description of the dynamics of the gauge coefficients by
incorporating their transformation rule into the CT's generating function

F=F+ga Qf“g

ZNOyR [ OXT OxT Ox n OX"  92xk
ax> \ 7 i axk oxa 9xE T oxk oXOXE )’

with @no‘f“ the canonical conjugates of the gauge fields I'"a£ and g1 a
dimensionless coupling constant.

@ The amended generating function .7:"5 now defines the transformation
rule for the vector fields a,, and for the gauge coefficients vnag.

@ As a feature of the canonical formalism, the generating function
simultaneously defines the rules for the respective conjugates, p* and
E]naé’\, and for the Hamiltonian.

@ This additional structure ensures the action principle to be maintained.
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General Relativity as an extended canonical gauge theory

)

Transformation rules for 7", (x) = " ¢(X)

The additional transformation rules are:
C OXT OxT Ox n OX" 9k
of =T gxk 9Xa 9XE T 9xk OXDXE
E] ijp _ O a&)\axn 8X’ 3XJ 8X“
k T Oxk X 9XE OXA
- - 2, XA Oyt . Oh
£ PO (X) ag(x) o OO

n
_ g e " [7,( o <6Xn Ox axf>+ P <8X77 P2,k )1
n

r77

XoOX> Oxv 9XP T o oxv
XM Toaxy \ axk aX>aXE ) T axv \ Oxk 9X2oXE
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E] ,'J'M _ O a&)\axn 8X’ 3XJ 8X“
k o 9xk 9X> XE OXA
I?xE 9X* oyt 7 Oh*

r77

Iu_ _paB wZ
Lt = =PYX) e gxaaxn o axs T 1o’ g

_ g e " [7,( o <6Xn Ox axf>+ P <8X77 P2,k )1
n

XM Toaxy \ axk aX>aXE ) T axv \ Oxk 9X2oXE

We observe:

@ The required transformation rule for the connection coefficients 7"a£
is reproduced.
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Lt = =PYX) e gxaaxn o axs T 1o’ g

_ g e " [7,( o <6Xn Ox axf>+ P <8X77 P2,k )1
n

XM Toaxy \ axk aX>aXE ) T axv \ Oxk 9X2oXE

We observe:

@ The required transformation rule for the connection coefficients 7"a£
is reproduced.

@ Their conjugates E]na5“ transform as a tensor!
@ The last rule defines the transformation of the amended Hamiltonians.
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General Relativity as an extended canonical gauge theory

Transformation rule for the Hamiltonian

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X* and x* in terms of the
gauge coefficients vnag and I'”ag, and their conjugates, Z]no‘@‘ and Qno‘f“,
according to the canonical transformation rules.
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Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X* and x* in terms of the
gauge coefficients vnag and I’”ag, and their conjugates, Z]no@‘ and Qno‘f“,
according to the canonical transformation rules.

Remarkably, this works well: all terms match up perfectly. The result is:

or’" orn . .

OXH aX¢

n
— 1g atn <87 af 4 0o

H det N — H det\ = %Qﬁa&u (

27 OxH Ox¢
+ lbaﬁ A)\ FAQB — f)aﬁ ax ’y)‘aﬁ

— YtV + 'V"aw”,f)
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or’" orn . .

OXH aX¢

n
— 1g atn <87 af 4 0o

H det N — H det\ = %Qﬁa&u (

27n OxH Ox¢

+ PP AT 5 — B anys
@ The terms emerge in a symmetric form with opposite sign in the
original and the transformed dynamical variables.

— YtV + ’Y"aw”,f)

14 /21



Transformation rule for the Hamiltonian

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X* and x* in terms of the
gauge coefficients vnag and I’”ag, and their conjugates, E]no@‘ and Qno‘f“,
according to the canonical transformation rules.

Remarkably, this works well: all terms match up perfectly. The result is:

- or’ orm . )
/ o _ 1A a af ap i i n
H det A Hdet/\—an M(aX“ + OXE Faér ,-#-i-raur if)

oy oy . )
1o ag Y ap
B ( o T oxe Vet Ve
+ PP AT 5 — B an v
@ The terms emerge in a symmetric form with opposite sign in the
original and the transformed dynamical variables.
@ No new gauge quantities are required, hence, the dynamical system is

now closed.
14 /21



General Relativity as an extended canonical gauge theory

Final form-invariant Hamiltonian

Similar to conventional gauge theories, the final form-invariant

Hamiltonian must contain in addition a dynamics term H, qyn to allow for
a non-static space-time. Furthermore

é},dyn(é) - He,dyn(a)

must hold in order for the final extended Hamiltonians to satisfy the
required transformation rule H, = He.
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General Relativity as an extended canonical gauge theory

Final form-invariant Hamiltonian

Similar to conventional gauge theories, the final form-invariant
Hamiltonian must contain in addition a dynamics term H, qyn to allow for
a non-static space-time. Furthermore

éydyn(é) - He,dyn(a)

must hold in order for the final extended Hamiltonians to satisfy the
required transformation rule H, = He.

The final form-invariant extended Hamiltonian is now given by
He,GR (aa ij: ;7 7> ‘NJ’ %) = 7-le (aa ij’ %) - %glﬂe,dyn(a) + ijaﬁ a) Fy>\o¢/8

. Ny | 0"
+ %glqnaﬁ,u (01# + as + fyka,u,fynkg - ’ykagf}/nku

y¢ OyH
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Canonical equation for a,,, p”

Due to the coupling term p*? ay ynaﬁ in HeGR, the field equations for a,
and p* acquire an additional term

831, . 8He,GR o OH n
dyr — Opve  Qpvh TV
op"  OHecr = OH
oyf —  da,  Oa,

det A — p*" 5.
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Canonical equation for a,,, p”

Due to the coupling term p*? ay 7na5 in HeGR, the field equations for a,
and p* acquire an additional term

831, . 8He,GR o OH
dyt — OpvE  OpvH
p”" _ OHegr _ O
oy da,  0Oa,
If we now interpret the fy”aﬁ as affine connections, then the partial

derivatives of the fields and the terms proportional to v can be combined
to yield covariant derivatives, which yields the tensor equations

oM . oM

+ ay ’y”yu

det A — p*" 5.

= g P8 s,

16
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Canonical equation for a,,, p”

Due to the coupling term p*? ay 7na5 in He qr, the field equations for a,
and p* acquire an additional term

631, . 8He,GR o OH
dyt — OpvE  OpvH
p”" _ OHegr _ O
oy da,  0Oa,
If we now interpret the 7Vaﬁ as affine connections, then the partial

derivatives of the fields and the terms proportional to v can be combined
to yield covariant derivatives, which yields the tensor equations

oM . oM

+ ay ’y”yu

det A — p*" 5.

dy; — A ., . — T 5 -
vip apl’“’ P B (931,
The coupling term in H gr thus converts the non-tensor equations for a,
and p"” emerging from 7 into tensor equations, provided that the gauge
coefficients 7”5 are interpreted as affine connections.
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o 5 n
Canonical equation for 7.,
The canonical equation for the gauge coefficients follows as
n
07 e __OHear
m ~
Oy ) (g1qn“£“)

OHe g oy 8717
_1Z77tedyn |, 1 op ag k n ok n
( 8y5 + ay“ +’Y ay,’y k& v a§7 kp

2 86”0[{;1 2
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OHea o0y 8717
_1Y7tedyn | 1 ap ag k . n  _ Ak om
( ay& + ay“ +’Y ay,’y k& v a§7 ku

2 86”0[{;1 2

Solved for He gyn, one finds exactly the representation of the

i n
Riemann curvature tensor r' .
n
a/7"[e,dyn o afyna,u 87

ag k .m k .nm _ n
Pa Oyt | oyn + Va1V ke = VaeV ky = Mg (1:07)
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Canonical equation for 7",

The canonical equation for the gauge coefficients follows as
" e __OHear
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Solved for He gyn, one finds exactly the representation of the

Riemann curvature tensor r’, .

a/He,dyn o afyna,u 8’771

ag k .m k .nm _ n
Pay e Oyt ayn T anY ke = Vag7 "k = Mags (7, 07)

We observe:

@ The CT requirement for q”afu to constitute a tensor can be satisfied.
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5 5 n
Canonical equation for 7.,
The canonical equation for the gauge coefficients follows as
n
07 e __OHear
m ~
Oy ) (g1qn°‘£“)

OHea Ny OV
1 e,dyn 1 ap ag k n k .n
) ( ay& + 8_)/“ +7 ay,ry k& -7 a§7 kp

2 86”0[{;1 2

Solved for He gyn, one finds exactly the representation of the

Riemann curvature tensor r’, .

a%e,dyn afyna,u 87"&& k n k n n
25,0~ oyt ayr T Y ke = VaeT k= Mags (1:97)
n

We observe:
@ The CT requirement for q”afu to constitute a tensor can be satisfied.
® He,dyn linear in g, only allows for constant (or zero) curvature.
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General Relativity as an extended canonical gauge theory

Options for choosing He dyn
For the particular choice of a “free-field” Hamiltonian that is a quadratic

g B

function of g 2 1
e,dyn — jqn

Y
q weps

we find
OHea
qnam B 85:0‘5? - rnaﬁﬂ <7’67)'

~+ With this choice of H¢ qyn, the quantity g — introduced formally in the
generating function — emerges as the Riemann curvature tensor.
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Options for choosing He dyn

For the particular choice of a “free-field” Hamiltonian that is a quadratic
function of g ¢

He,dyn = %?]na 5qna557

8fHe,dyn
qnafﬂ = Y akfB = rnag,B (’7767)‘
an

we find

~+ With this choice of H¢ qyn, the quantity g — introduced formally in the
generating function — emerges as the Riemann curvature tensor.

We could as well define Hc gyn as
1,
He,dyn - _ﬁqnaéﬁ (52ga5 - 5gga§) .
The above field equation then yields

1
Fiags (1,07) = =7z (8en8ap — BanBoc) -
~» The dynamical quantities + then describe a 4-dimensional Anti-de Sitter

space (AdS4) with radius ¢, hence a solution of the Einstein-Hilbert action.
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General Relativity as an extended canonical gauge theory

TOX

Canonical equation for g,

The derivative of H. gr with respect to v*_, follows as

9g,.m" OHecR 5« roa ~ Boa , L.
= — 2 = ’)/ q Toa _ ’YT q g + 7PTU Ay .
dy™ 0(g17"% ) rop af &1 "
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General Relativity as an extended canonical gauge theory

TOX

Canonical equation for g,

The derivative of H. gr with respect to v*_, follows as

88’5700‘ - _ aHe,GR — ,YB E] TOO ,YT E] Boa + iijﬂ'o' 3
Dy J0(g17"o) ratp ap 81 "
This equation is actually a tensor equation
gl(anTUa);a = ,BTU g
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General Relativity as an extended canonical gauge theory

Canonical equation for g,

The derivative of H. gr with respect to v*_, follows as

0§, OHe,GR

1
B~ ToQ T ~ Boa ~TO

=— = g - g + —P"7 a.
5}/0‘ 0 (gl )NTO') T e 7 op 81 "

This equation is actually a tensor equation

gl(anTUa);a = ,BTU g

~> For a torsion-free space-time, the canonical equation states that
the fields a,, and their conjugates, p"“ act as the source of §,."7¢.
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General Relativity as an extended canonical gauge theory

Canonical equation for g,

The derivative of H. gr with respect to v*_, follows as

865700‘ - _ aHe,GR — ,YB E] TOO ,YT E] Boa + iijTO’ 3
Dy J0(g17"o) ratp ap 81 "
This equation is actually a tensor equation
gl(anTUa);a = ,BTU g

~> For a torsion-free space-time, the canonical equation states that
the fields a,, and their conjugates, p"“ act as the source of §,."7¢.

For the particular case of H, gyn quadratic in gq,"%, we have

In contracted form this yields a Poisson-like equation for the Ricci tensor r™®

gera;a _ pTa E J
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Conclusions

@ The canonical transformation formalism ensures the action principle
to be maintained.

@ The gauge principle was applied to theories that are form-invariant
under Lorentz transformations as the system’s global symmetry group.

@ The theories can be rendered form-invariant under the corresponding
local group (i.e., local Lorentz transformations) with the affine
connection coefficients fy”a£ acting as the respective gauge quantities.
The resulting theory then satisfies the general principle of relativity.

@ Up to a “free-field” Hamiltonian H, qyn, the canonical formalism
yields unambiguously a Hamiltonian that describes the dynamics of
the connection coefficients (“displacement fields") 777&5.

@ For H¢ qyn quadratic in the Riemann tensor, a “Poisson-type”
equation for the Ricci tensor emerges.

@ The emerging coupling constant gy of the theory is dimensionless.
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@ The canonical formalism does not yield a unique GR theory, but
restricts the freedom to merely choosing the appropriate He gyn.

@ A Lagrangian that is quadratic in the curvature tensor was already
proposed by A. Einstein in a personal letter to H. Weyl, reasoning
analogies with other classical field theories.

@ The formalism can easily be generalized by introducing the metric g,
as an additional canonical variable. The theory then allows for
non-zero torsion and non-metricity tensors.

@ The formalism can be further generalized by introducing tetrads
instead of the metric. As we can then distinguish the internal and
external (space-time) degrees of freedom of spinors, this allows to
describe the interaction of fermions with the space-time dynamics.
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