General Relativity from a Canonical Transformation Formalism

J. Struckmeier1*,*² , D. Vasak³ , J. Kirsch³ , H. Stöcker1*,*2*,*³

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany j.struckmeier@gsi.de, web-docs.gsi.de/˜struck

²Fachbereich Physik, Goethe Universität, Frankfurt am Main, Germany

³Fankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany

Karl Schwarzschild Meeting 2015

Frankfurt Institute for Advanced Studies (FIAS) Frankfurt am Main, Germany, 20 – 24 July 2015

1 [Classical field theory with variable space-time](#page-13-0)

- [Extended Lagrangians in field theory](#page-15-0) **•** [Example: Einstein-Hilbert Lagrangian](#page-15-0)
- [Extended covariant Hamiltonians in field theory](#page-18-0)
- [Extended canonical transformations](#page-21-0)
- 5 [General Relativity as an extended canonical gauge theory](#page-29-0)
- **[Conclusions and Outlook](#page-64-0)**

1 [Classical field theory with variable space-time](#page-13-0)

- [Extended Lagrangians in field theory](#page-15-0) **•** [Example: Einstein-Hilbert Lagrangian](#page-15-0)
- [Extended covariant Hamiltonians in field theory](#page-18-0)
- [Extended canonical transformations](#page-21-0)
- 5 [General Relativity as an extended canonical gauge theory](#page-29-0)
- 6 [Conclusions and Outlook](#page-64-0)

- 1 [Classical field theory with variable space-time](#page-13-0)
- [Extended Lagrangians in field theory](#page-15-0)
	- **•** [Example: Einstein-Hilbert Lagrangian](#page-15-0)
- 3 [Extended covariant Hamiltonians in field theory](#page-18-0)
	- [Extended canonical transformations](#page-21-0)
	- 5 [General Relativity as an extended canonical gauge theory](#page-29-0)
	- 6 [Conclusions and Outlook](#page-64-0)

- [Classical field theory with variable space-time](#page-13-0)
- [Extended Lagrangians in field theory](#page-15-0)
	- **•** [Example: Einstein-Hilbert Lagrangian](#page-15-0)
- 3 [Extended covariant Hamiltonians in field theory](#page-18-0)

- 5 [General Relativity as an extended canonical gauge theory](#page-29-0)
- 6 [Conclusions and Outlook](#page-64-0)

- [Classical field theory with variable space-time](#page-13-0)
- [Extended Lagrangians in field theory](#page-15-0)
	- **•** [Example: Einstein-Hilbert Lagrangian](#page-15-0)
- 3 [Extended covariant Hamiltonians in field theory](#page-18-0)
- 4 [Extended canonical transformations](#page-21-0)
	- 5 [General Relativity as an extended canonical gauge theory](#page-29-0)

6 [Conclusions and Outlook](#page-64-0)

- [Classical field theory with variable space-time](#page-13-0)
- [Extended Lagrangians in field theory](#page-15-0)
	- **•** [Example: Einstein-Hilbert Lagrangian](#page-15-0)
- [Extended covariant Hamiltonians in field theory](#page-18-0)
- 4 [Extended canonical transformations](#page-21-0)
	- 5 [General Relativity as an extended canonical gauge theory](#page-29-0)
- 6 [Conclusions and Outlook](#page-64-0)

-
-
-
-
-

- **• Action Principle: The fundamental laws of nature should follow from** action principles.
- ² General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference.
- $\odot \rightsquigarrow$ The change of reference frame must constitute an extended canonical transformation, which by construction maintains the form of the action principle.
- Φ For a system of tensor fields, the affine connection coefficients $\mathsf{\Gamma}^\alpha_{\phantom\alpha\mu\nu}$ turn out to be the relevant gauge quantities.
- ⁵ This confirms Einstein's conclusion: ". . . the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ *α µν* . . . "

- **• Action Principle: The fundamental laws of nature should follow from** action principles.
- ² General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference.
- $\odot \rightsquigarrow$ The change of reference frame must constitute an extended canonical transformation, which by construction maintains the form of the action principle.
- Φ For a system of tensor fields, the affine connection coefficients $\mathsf{\Gamma}^\alpha_{\phantom\alpha\mu\nu}$ turn out to be the relevant gauge quantities.
- ⁵ This confirms Einstein's conclusion: ". . . the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ *α µν* . . . "

- **• Action Principle: The fundamental laws of nature should follow from** action principles.
- ² General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference.
- $\bullet \rightsquigarrow$ The change of reference frame must constitute an extended canonical transformation, which by construction maintains the form of the action principle.
- Φ For a system of tensor fields, the affine connection coefficients $\mathsf{\Gamma}^\alpha_{\phantom\alpha\mu\nu}$ turn out to be the relevant gauge quantities.
- ⁵ This confirms Einstein's conclusion: ". . . the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ *α µν* . . . "

- **• Action Principle: The fundamental laws of nature should follow from** action principles.
- ² General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference.
- $\bullet \rightsquigarrow$ The change of reference frame must constitute an extended canonical transformation, which by construction maintains the form of the action principle.
- \bullet For a system of tensor fields, the affine connection coefficients $\mathsf{\Gamma}^\alpha_{\phantom\alpha\mu\nu}$ turn out to be the relevant gauge quantities.
- ⁵ This confirms Einstein's conclusion: ". . . the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ *α µν* . . . "

- **• Action Principle: The fundamental laws of nature should follow from** action principles.
- ² General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference.
- $\bullet \rightsquigarrow$ The change of reference frame must constitute an extended canonical transformation, which by construction maintains the form of the action principle.
- \bullet For a system of tensor fields, the affine connection coefficients $\mathsf{\Gamma}^\alpha_{\phantom\alpha\mu\nu}$ turn out to be the relevant gauge quantities.
- ⁵ This confirms Einstein's conclusion: ". . . the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ *α µν* . . . "

Extended action principle, extended Lagrangian

Generalized action functional for dynamical space-time: treat *∂*x *^ν/∂*y *µ* as dynamical variable in the Lagrangian $\mathcal L$

Extended action principle

$$
S=\int_{R'}\mathcal{L}\left(a_{\mu},\frac{\partial a_{\mu}}{\partial x^{\nu}}\right)\det\Lambda\,d^{4}y,\quad\delta S\overset{!}{=}0,\quad\delta a_{\mu}\big|_{\partial R'}=\delta x^{\mu}\big|_{\partial R'}\overset{!}{=}0
$$

with y^{μ} the new set of independent variables and $x^{\nu} = x^{\nu}(y)$

$$
\Lambda = \begin{pmatrix} \frac{\partial x^0}{\partial y^0} & \cdots & \frac{\partial x^0}{\partial y^3} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^3}{\partial y^0} & \cdots & \frac{\partial x^3}{\partial y^3} \end{pmatrix}, \quad \det \Lambda = \frac{\partial (x^0, \ldots, x^3)}{\partial (y^0, \ldots, y^3)} \neq 0.
$$

The integrand defines the extended Lagrangian $\mathcal{L}_{e} = \mathcal{L}$ det Λ

$$
\mathcal{L}_{e}\left(a_{\mu}(y),\frac{\partial a_{\mu}(y)}{\partial y^{\nu}},\frac{\partial x^{\mu}(y)}{\partial y^{\nu}}\right)=\mathcal{L}\left(a_{\mu}(y),\frac{\partial y^{\alpha}}{\partial x^{\nu}}\frac{\partial a_{\mu}(y)}{\partial y^{\alpha}}\right)\det\Lambda
$$

Extended action principle, extended Lagrangian

Generalized action functional for dynamical space-time: treat *∂*x *^ν/∂*y *µ* as dynamical variable in the Lagrangian $\mathcal L$

Extended action principle

$$
S=\int_{R'}\mathcal{L}\left(a_{\mu},\frac{\partial a_{\mu}}{\partial x^{\nu}}\right)\det\Lambda\,d^{4}y,\quad\delta S\overset{!}{=}0,\quad\delta a_{\mu}\big|_{\partial R'}=\delta x^{\mu}\big|_{\partial R'}\overset{!}{=}0
$$

with y^{μ} the new set of independent variables and $x^{\nu} = x^{\nu}(y)$

$$
\Lambda = \begin{pmatrix} \frac{\partial x^0}{\partial y^0} & \cdots & \frac{\partial x^0}{\partial y^3} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^3}{\partial y^0} & \cdots & \frac{\partial x^3}{\partial y^3} \end{pmatrix}, \quad \det \Lambda = \frac{\partial (x^0, \ldots, x^3)}{\partial (y^0, \ldots, y^3)} \neq 0.
$$

The integrand defines the extended Lagrangian $\mathcal{L}_{e} = \mathcal{L}$ det Λ

$$
\mathcal{L}_{\mathrm{e}}\bigg(a_{\mu}(y),\frac{\partial a_{\mu}(y)}{\partial y^{\nu}},\frac{\partial x^{\mu}(y)}{\partial y^{\nu}}\bigg)=\mathcal{L}\bigg(a_{\mu}(y),\frac{\partial y^{\alpha}}{\partial x^{\nu}}\frac{\partial a_{\mu}(y)}{\partial y^{\alpha}}\bigg)\det\Lambda
$$

Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

$$
\mathcal{L}_{\mathrm{e,EH}} = (\mathcal{L}_R + \mathcal{L}_{\mathrm{M}}) \det \Lambda, \qquad \mathcal{L}_R = \frac{R}{2\kappa} = \frac{1}{2\kappa} g^{\mu\nu} R_{\mu\nu},
$$

wherein $R = g^{\mu\nu}R_{\mu\nu}$ denotes the Riemann curvature scalar, κ [Lenght] 2 a coupling constant, and \mathcal{L}_M the conventional Lagrangian of a given system.

The Ricci tensor $R_{\mu\nu} = R^{\eta}_{\ \mu\eta\nu}$ is the contraction $\eta = \beta$ of the

$$
R^{\eta}_{\;\;\mu\beta\nu}=\frac{\partial\Gamma^{\eta}_{\;\;\mu\nu}}{\partial y^{\beta}}-\frac{\partial\Gamma^{\eta}_{\;\;\mu\beta}}{\partial y^{\nu}}+\Gamma^{\lambda}_{\;\;\mu\nu}\Gamma^{\eta}_{\;\;\lambda\beta}-\Gamma^{\lambda}_{\;\;\mu\beta}\Gamma^{\eta}_{\;\;\lambda\nu}.
$$

In the Palatini approach, the metric and the connection coefficients are a priori independent quantities, hence the Euler-Lagrange equations are here

$$
\frac{\partial \mathcal{L}_{e,EH}}{\partial \left(\frac{\partial x\nu}{\partial y^\mu}\right)}=0, \qquad \frac{\partial}{\partial y^\beta}\frac{\partial \mathcal{L}_{e,EH}}{\partial {\left(\frac{\partial \Gamma^\eta}_{\partial y^\beta}\right)}}-\frac{\partial \mathcal{L}_{e,EH}}{\partial \Gamma^\eta_{\alpha\xi}}=0.
$$

Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

$$
\mathcal{L}_{e,EH} = (\mathcal{L}_R + \mathcal{L}_M) \det \Lambda, \qquad \mathcal{L}_R = \frac{R}{2\kappa} = \frac{1}{2\kappa} g^{\mu\nu} R_{\mu\nu},
$$

wherein $R = g^{\mu\nu}R_{\mu\nu}$ denotes the Riemann curvature scalar, κ [Lenght] 2 a coupling constant, and \mathcal{L}_M the conventional Lagrangian of a given system.

The Ricci tensor $R_{\mu\nu} = R^{\eta}_{\hphantom{\eta}\mu\eta\nu}$ is the contraction $\eta = \beta$ of the

Riemann-Christoffel curvature tensor

$$
R^{\eta}_{\mu\beta\nu} = \frac{\partial \Gamma^{\eta}_{\mu\nu}}{\partial y^{\beta}} - \frac{\partial \Gamma^{\eta}_{\mu\beta}}{\partial y^{\nu}} + \Gamma^{\lambda}_{\mu\nu} \Gamma^{\eta}_{\lambda\beta} - \Gamma^{\lambda}_{\mu\beta} \Gamma^{\eta}_{\lambda\nu}.
$$

In the Palatini approach, the metric and the connection coefficients are a priori independent quantities, hence the Euler-Lagrange equations are here

$$
\frac{\partial \mathcal{L}_{e,EH}}{\partial \left(\frac{\partial x\nu}{\partial y^\mu}\right)}=0, \qquad \frac{\partial}{\partial y^\beta}\frac{\partial \mathcal{L}_{e,EH}}{\partial {\left(\frac{\partial \Gamma^\eta_{\alpha \xi}}{\partial y^\beta}\right)}}-\frac{\partial \mathcal{L}_{e,EH}}{\partial \Gamma^\eta_{\alpha \xi}}=0.
$$

Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

$$
\mathcal{L}_{e,EH} = (\mathcal{L}_R + \mathcal{L}_M) \det \Lambda, \qquad \mathcal{L}_R = \frac{R}{2\kappa} = \frac{1}{2\kappa} g^{\mu\nu} R_{\mu\nu},
$$

wherein $R = g^{\mu\nu}R_{\mu\nu}$ denotes the Riemann curvature scalar, κ [Lenght] 2 a coupling constant, and \mathcal{L}_M the conventional Lagrangian of a given system.

The Ricci tensor $R_{\mu\nu} = R^{\eta}_{\hphantom{\eta}\mu\eta\nu}$ is the contraction $\eta = \beta$ of the

Riemann-Christoffel curvature tensor

$$
R^{\eta}_{\mu\beta\nu} = \frac{\partial \Gamma^{\eta}_{\mu\nu}}{\partial y^{\beta}} - \frac{\partial \Gamma^{\eta}_{\mu\beta}}{\partial y^{\nu}} + \Gamma^{\lambda}_{\mu\nu} \Gamma^{\eta}_{\lambda\beta} - \Gamma^{\lambda}_{\mu\beta} \Gamma^{\eta}_{\lambda\nu}.
$$

In the Palatini approach, the metric and the connection coefficients are a priori independent quantities, hence the Euler-Lagrange equations are here

$$
\frac{\partial \mathcal{L}_{e,EH}}{\partial\left(\frac{\partial x\nu}{\partial y^\mu}\right)}=0, \qquad \frac{\partial}{\partial y^\beta}\frac{\partial \mathcal{L}_{e,EH}}{\partial\left(\frac{\partial \Gamma^\eta_{\alpha \xi}}{\partial y^\beta}\right)}-\frac{\partial \mathcal{L}_{e,EH}}{\partial \Gamma^\eta_{\alpha \xi}}=0.
$$

Extended covariant Hamiltonian

We define the $p^{\mu\nu}$ and the tensor densities $\tilde{p}^{\mu\nu}=p^{\mu\nu}$ det Λ as the dual quantities of the derivatives of the fields according to

$$
p^{\mu\nu}(x) = \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial a_{\mu}(x)}{\partial x^{\nu}}\right)}, \qquad \tilde{p}^{\mu\nu}(y) = \frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(\frac{\partial a_{\mu}(y)}{\partial y^{\mu}}\right)}.
$$

Similarly, the two-point tensor $\tilde{t}_{\nu}{}^{\mu}$ defines the dual quantity to $\partial x^{\nu}/\partial y^{\mu}$

$$
\tilde{t}_{\nu}^{\ \mu}=-\frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial\left(\frac{\partial x^{\nu}}{\partial y^{\mu}}\right)}
$$

An extended Lagrangian $\mathcal{L}_{e} = \mathcal{L}$ det Λ is thus Legendre-transformed to the

$$
\mathcal{H} = p^{\beta\alpha} \frac{\partial a_\beta}{\partial x^\alpha} - \mathcal{L}, \qquad \mathcal{H}_e = \mathcal{H} \det \Lambda - \tilde{t}_\alpha{}^\beta \frac{\partial x^\alpha}{\partial y^\beta}.
$$

Extended covariant Hamiltonian

We define the $p^{\mu\nu}$ and the tensor densities $\tilde{p}^{\mu\nu}=p^{\mu\nu}$ det Λ as the dual quantities of the derivatives of the fields according to

$$
p^{\mu\nu}(x) = \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial a_{\mu}(x)}{\partial x^{\nu}}\right)}, \qquad \tilde{p}^{\mu\nu}(y) = \frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(\frac{\partial a_{\mu}(y)}{\partial y^{\mu}}\right)}.
$$

Similarly, the two-point tensor $\tilde{t}_{\nu}{}^{\mu}$ defines the dual quantity to $\partial x^{\nu}/\partial y^{\mu}$

$$
\tilde{t}_{\nu}^{\;\;\mu}=-\frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial\left(\frac{\partial x^{\nu}}{\partial y^{\mu}}\right)}
$$

An extended Lagrangian $\mathcal{L}_{e} = \mathcal{L}$ det Λ is thus Legendre-transformed to the

$$
\mathcal{H} = p^{\beta\alpha} \frac{\partial a_\beta}{\partial x^\alpha} - \mathcal{L}, \qquad \mathcal{H}_e = \mathcal{H} \det \Lambda - \tilde{t}_\alpha{}^\beta \frac{\partial x^\alpha}{\partial y^\beta}.
$$

Extended covariant Hamiltonian

We define the $p^{\mu\nu}$ and the tensor densities $\tilde{p}^{\mu\nu}=p^{\mu\nu}$ det Λ as the dual quantities of the derivatives of the fields according to

$$
p^{\mu\nu}(x) = \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial a_{\mu}(x)}{\partial x^{\nu}}\right)}, \qquad \tilde{p}^{\mu\nu}(y) = \frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(\frac{\partial a_{\mu}(y)}{\partial y^{\mu}}\right)}.
$$

Similarly, the two-point tensor $\tilde{t}_{\nu}{}^{\mu}$ defines the dual quantity to $\partial x^{\nu}/\partial y^{\mu}$

$$
\tilde{t}_{\nu}^{\ \mu}=-\frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial\left(\frac{\partial x^{\nu}}{\partial y^{\mu}}\right)}
$$

An extended Lagrangian $\mathcal{L}_{\rm e} = \mathcal{L}$ det Λ is thus Legendre-transformed to the

Extended Hamiltonian \mathcal{H}_{e}

$$
\mathcal{H} = \rho^{\beta\alpha} \frac{\partial a_\beta}{\partial x^\alpha} - \mathcal{L}, \qquad \mathcal{H}_{\rm e} = \mathcal{H} \det \Lambda - \tilde{t}_\alpha{}^\beta \frac{\partial x^\alpha}{\partial y^\beta}.
$$

Form-invariance for the extended action principle

The extended action principle must be maintained for extended canonical transformations that map $a_\mu\mapsto A_\mu$, $\tilde p^{\mu\nu}\mapsto \tilde P^{\mu\nu}$, $x^\mu\mapsto X^\mu$, $\tilde t_\nu{}^\mu\mapsto \tilde T_\nu{}^\mu$

Condition for extended canonical transformations

$$
\delta \int_{R'} \left[\tilde{p}^{\beta \alpha} \frac{\partial a_{\beta}}{\partial y^{\alpha}} - \tilde{t}_{\beta}^{\alpha} \frac{\partial x^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{e} \right] d^{4}y
$$

=
$$
\delta \int_{R'} \left[\tilde{P}^{\beta \alpha} \frac{\partial A_{\beta}}{\partial y^{\alpha}} - \tilde{T}_{\beta}^{\alpha} \frac{\partial X^{\beta}}{\partial y^{\alpha}} - \mathcal{H}'_{e} \right] d^{4}y.
$$

This condition implies that the integrands may differ by the divergence of a vector field \mathcal{F}_{1}^{μ} with $\delta \mathcal{F}_{1}^{\mu}$ $\int_1^\mu\bigl|_{\partial R'}=0$

$$
\tilde{p}^{\beta\alpha} \frac{\partial a_\beta}{\partial y^\alpha} - \tilde{t}_\beta{}^\alpha \frac{\partial x^\beta}{\partial y^\alpha} - \mathcal{H}_{\rm e} = \tilde{P}^{\beta\alpha} \frac{\partial A_\beta}{\partial y^\alpha} - \tilde{\mathcal{T}}_\beta{}^\alpha \frac{\partial X^\beta}{\partial y^\alpha} - \mathcal{H}_{\rm e}' + \frac{\partial \mathcal{F}^\alpha_1}{\partial y^\alpha}.
$$

 \mathcal{F}_{1}^{α} may be defined to depend on a_{β} , A_{β} , x^{ν} , and X^{ν} only. \rightsquigarrow This defines the extended generating function of type $\mathcal{F}_{1}^{\alpha}.$

Form-invariance for the extended action principle

The extended action principle must be maintained for extended canonical transformations that map $a_\mu\mapsto A_\mu$, $\tilde p^{\mu\nu}\mapsto \tilde P^{\mu\nu}$, $x^\mu\mapsto X^\mu$, $\tilde t_\nu{}^\mu\mapsto \tilde T_\nu{}^\mu$

Condition for extended canonical transformations

$$
\delta \int_{R'} \left[\tilde{p}^{\beta \alpha} \frac{\partial a_{\beta}}{\partial y^{\alpha}} - \tilde{t}_{\beta}^{\alpha} \frac{\partial x^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{e} \right] d^{4}y
$$

=
$$
\delta \int_{R'} \left[\tilde{P}^{\beta \alpha} \frac{\partial A_{\beta}}{\partial y^{\alpha}} - \tilde{T}_{\beta}^{\alpha} \frac{\partial X^{\beta}}{\partial y^{\alpha}} - \mathcal{H}'_{e} \right] d^{4}y.
$$

This condition implies that the integrands may differ by the divergence of a vector field \mathcal{F}_{1}^{μ} with $\delta \mathcal{F}_{1}^{\mu}$ $\int_1^\mu\bigl|_{\partial R'}=0$

$$
\tilde{p}^{\beta\alpha} \frac{\partial a_\beta}{\partial y^\alpha} - \tilde{t}_\beta{}^\alpha \frac{\partial x^\beta}{\partial y^\alpha} - \mathcal{H}_{\rm e} = \tilde{P}^{\beta\alpha} \frac{\partial A_\beta}{\partial y^\alpha} - \tilde{T}_\beta{}^\alpha \frac{\partial X^\beta}{\partial y^\alpha} - \mathcal{H}_{\rm e}' + \frac{\partial \mathcal{F}_{1}^\alpha}{\partial y^\alpha}.
$$

 \mathcal{F}_{1}^{α} may be defined to depend on a_{β} , A_{β} , x^{ν} , and X^{ν} only. \rightsquigarrow This defines the extended generating function of type $\mathcal{F}_{1}^{\alpha}.$

Form-invariance for the extended action principle

The extended action principle must be maintained for extended canonical transformations that map $a_\mu\mapsto A_\mu$, $\tilde p^{\mu\nu}\mapsto \tilde P^{\mu\nu}$, $x^\mu\mapsto X^\mu$, $\tilde t_\nu{}^\mu\mapsto \tilde T_\nu{}^\mu$

Condition for extended canonical transformations

$$
\delta \int_{R'} \left[\tilde{p}^{\beta \alpha} \frac{\partial a_{\beta}}{\partial y^{\alpha}} - \tilde{t}_{\beta}^{\alpha} \frac{\partial x^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{e} \right] d^{4}y
$$

=
$$
\delta \int_{R'} \left[\tilde{P}^{\beta \alpha} \frac{\partial A_{\beta}}{\partial y^{\alpha}} - \tilde{T}_{\beta}^{\alpha} \frac{\partial X^{\beta}}{\partial y^{\alpha}} - \mathcal{H}'_{e} \right] d^{4}y.
$$

This condition implies that the integrands may differ by the divergence of a vector field \mathcal{F}_{1}^{μ} with $\delta \mathcal{F}_{1}^{\mu}$ $\int_1^\mu\bigl|_{\partial R'}=0$

$$
\tilde{p}^{\beta\alpha} \frac{\partial a_\beta}{\partial y^\alpha} - \tilde{t}_\beta{}^\alpha \frac{\partial x^\beta}{\partial y^\alpha} - \mathcal{H}_{\rm e} = \tilde{P}^{\beta\alpha} \frac{\partial A_\beta}{\partial y^\alpha} - \tilde{T}_\beta{}^\alpha \frac{\partial X^\beta}{\partial y^\alpha} - \mathcal{H}_{\rm e}' + \frac{\partial \mathcal{F}_{1}^\alpha}{\partial y^\alpha}.
$$

 \mathcal{F}_{1}^{α} may be defined to depend on a_{β} , A_{β} , x^{ν} , and X^{ν} only. \rightsquigarrow This defines the <code>extended</code> generating function of type $\mathcal{F}_{1}^{\alpha}.$

Transformation rules for a generating function \mathcal{F}_{1}^{μ} 1

The divergence of a vector function $\mathcal{F}_{1}^{\alpha}(a_{\beta},A_{\beta},x^{\nu},X^{\nu})$ is

$$
\frac{\partial {\cal F}_{1}^{\alpha}}{\partial y^{\alpha}}=\frac{\partial {\cal F}_{1}^{\alpha}}{\partial a_{\beta}}\frac{\partial a_{\beta}}{\partial y^{\alpha}}+\frac{\partial {\cal F}_{1}^{\alpha}}{\partial A_{\beta}}\frac{\partial A_{\beta}}{\partial y^{\alpha}}+\frac{\partial {\cal F}_{1}^{\alpha}}{\partial x^{\beta}}\frac{\partial x^{\beta}}{\partial y^{\alpha}}+\frac{\partial {\cal F}_{1}^{\alpha}}{\partial X^{\beta}}\frac{\partial X^{\beta}}{\partial y^{\alpha}}.
$$

Comparing the coefficients with the integrand condition yields the

$$
\tilde{p}^{\beta\mu}=\frac{\partial \mathcal{F}_1^{\mu}}{\partial a_{\beta}},\;\; \tilde{P}^{\beta\mu}=-\frac{\partial \mathcal{F}_1^{\mu}}{\partial A_{\beta}},\;\; \tilde{t}_{\nu}^{\;\;\mu}=-\frac{\partial \mathcal{F}_1^{\mu}}{\partial x^{\nu}},\;\; \tilde{T}_{\nu}^{\;\;\mu}=\frac{\partial \mathcal{F}_1^{\mu}}{\partial X^{\nu}},\;\; \mathcal{H}_{e}^{\prime}=\mathcal{H}_{e}.
$$

The transformation rule for the extended Hamiltonian translates into the following rule for the given covariant Hamiltonian H

$$
\mathcal{H}'\det \mathsf{\Lambda}'-\,\tilde{\mathsf{T}}_\alpha{}^\beta \frac{\partial \mathsf{X}^\alpha}{\partial \mathsf{y}^\beta}=\mathcal{H}\det \mathsf{\Lambda}-\tilde{\mathsf{t}}_\alpha{}^\beta \frac{\partial \mathsf{x}^\alpha}{\partial \mathsf{y}^\beta}.
$$

Transformation rules for a generating function \mathcal{F}_{1}^{μ} 1

The divergence of a vector function $\mathcal{F}_{1}^{\alpha}(a_{\beta},A_{\beta},x^{\nu},X^{\nu})$ is

$$
\frac{\partial \mathcal{F}_1^\alpha}{\partial y^\alpha} = \frac{\partial \mathcal{F}_1^\alpha}{\partial a_\beta} \frac{\partial a_\beta}{\partial y^\alpha} + \frac{\partial \mathcal{F}_1^\alpha}{\partial A_\beta} \frac{\partial A_\beta}{\partial y^\alpha} + \frac{\partial \mathcal{F}_1^\alpha}{\partial x^\beta} \frac{\partial x^\beta}{\partial y^\alpha} + \frac{\partial \mathcal{F}_1^\alpha}{\partial X^\beta} \frac{\partial X^\beta}{\partial y^\alpha}.
$$

Comparing the coefficients with the integrand condition yields the

Transformation rules for a generating function \mathcal{F}^μ_1 1

$$
\tilde{\rho}^{\beta\mu}=\frac{\partial\mathcal{F}_{1}^{\mu}}{\partial a_{\beta}},\;\;\tilde{\rho}^{\beta\mu}=-\frac{\partial\mathcal{F}_{1}^{\mu}}{\partial A_{\beta}},\;\;\tilde{t}_{\nu}^{\;\mu}=-\frac{\partial\mathcal{F}_{1}^{\mu}}{\partial x^{\nu}},\;\;\tilde{T}_{\nu}^{\;\mu}=\frac{\partial\mathcal{F}_{1}^{\mu}}{\partial X^{\nu}},\;\;\mathcal{H}_{e}^{\prime}=\mathcal{H}_{e}.
$$

The transformation rule for the extended Hamiltonian translates into the following rule for the given covariant Hamiltonian H

$$
\mathcal{H}'\det \mathsf{\Lambda}'-\tilde{\mathsf{T}}_\alpha{}^\beta \frac{\partial \mathsf{X}^\alpha}{\partial \mathsf{y}^\beta}=\mathcal{H}\det \mathsf{\Lambda}-\tilde{\mathsf{t}}_\alpha{}^\beta \frac{\partial \mathsf{x}^\alpha}{\partial \mathsf{y}^\beta}.
$$

Transformation rules for a generating function \mathcal{F}_{1}^{μ} 1

The divergence of a vector function $\mathcal{F}_{1}^{\alpha}(a_{\beta},A_{\beta},x^{\nu},X^{\nu})$ is

$$
\frac{\partial \mathcal{F}_1^\alpha}{\partial y^\alpha} = \frac{\partial \mathcal{F}_1^\alpha}{\partial a_\beta} \frac{\partial a_\beta}{\partial y^\alpha} + \frac{\partial \mathcal{F}_1^\alpha}{\partial A_\beta} \frac{\partial A_\beta}{\partial y^\alpha} + \frac{\partial \mathcal{F}_1^\alpha}{\partial x^\beta} \frac{\partial x^\beta}{\partial y^\alpha} + \frac{\partial \mathcal{F}_1^\alpha}{\partial X^\beta} \frac{\partial X^\beta}{\partial y^\alpha}.
$$

Comparing the coefficients with the integrand condition yields the

Transformation rules for a generating function \mathcal{F}^μ_1 1

$$
\tilde{p}^{\beta\mu}=\frac{\partial\mathcal{F}_1^{\mu}}{\partial a_{\beta}},\;\;\tilde{P}^{\beta\mu}=-\frac{\partial\mathcal{F}_1^{\mu}}{\partial A_{\beta}},\;\;\tilde{t}_{\nu}^{\;\mu}=-\frac{\partial\mathcal{F}_1^{\mu}}{\partial x^{\nu}},\;\;\tilde{T}_{\nu}^{\;\mu}=\frac{\partial\mathcal{F}_1^{\mu}}{\partial X^{\nu}},\;\;\mathcal{H}_{\mathrm{e}}^{\prime}=\mathcal{H}_{\mathrm{e}}.
$$

The transformation rule for the extended Hamiltonian translates into the following rule for the given covariant Hamiltonian H

$$
\mathcal{H}'\det \mathsf{\Lambda}'-\,\tilde{\mathsf{T}}_\alpha{}^\beta \frac{\partial \mathsf{X}^\alpha}{\partial \mathsf{y}^\beta}=\mathcal{H}\det \mathsf{\Lambda}-\,\tilde{\mathsf{t}}_\alpha{}^\beta \frac{\partial \mathsf{x}^\alpha}{\partial \mathsf{y}^\beta}.
$$

Extended generating function of type \mathcal{F}_2^{μ} 2

By means of a Legendre transformation

$$
\mathcal{F}_{2}^{\alpha}(a_{\beta}, \tilde{P}^{\beta\nu}, x^{\nu}, \tilde{T}_{\nu}^{\mu}) = \mathcal{F}_{1}^{\alpha}(a_{\beta}, A_{\beta}, x^{\nu}, X^{\nu}) + A_{\beta} \tilde{P}^{\beta\alpha} - X^{\beta} \tilde{T}_{\beta}^{\alpha},
$$

an equivalent set of transformation rules is encountered, hence the

Rules for an extended generating function \mathcal{F}_2^{μ} 2

$$
\tilde{p}^{\beta\mu}=\frac{\partial\mathcal{F}_{2}^{\mu}}{\partial a_{\beta}},~~A_{\beta}\delta_{\nu}^{\mu}=\frac{\partial\mathcal{F}_{2}^{\mu}}{\partial\tilde{P}^{\beta\nu}},~~\tilde{t}_{\nu}^{\;\mu}=-\frac{\partial\mathcal{F}_{2}^{\mu}}{\partial x^{\nu}},~~X^{\alpha}\delta_{\nu}^{\mu}=-\frac{\partial\mathcal{F}_{2}^{\mu}}{\partial\tilde{T}_{\alpha}^{\;\;\nu}},~~\mathcal{H}_{e}^{\prime}=\mathcal{H}_{e}
$$

There are 6 symmetry relations for \mathcal{F}_{2}^{μ} $\frac{\mu}{2}$ of the type

$$
\frac{\partial \tilde{p}^{\beta\mu}}{\partial \tilde{\rho}^{\alpha\nu}} = \frac{\partial^2 \mathcal{F}_2^{\mu}}{\partial a_{\beta} \partial \tilde{\rho}^{\alpha\nu}} = \delta^{\mu}_{\nu} \frac{\partial A_{\alpha}}{\partial a_{\beta}}, \qquad \frac{\partial \tilde{t}_{\beta}^{\mu}}{\partial \tilde{T}_{\alpha}^{\ \nu}} = -\frac{\partial^2 \mathcal{F}_2^{\mu}}{\partial x^{\beta} \partial \tilde{T}_{\alpha}^{\ \nu}} = \delta^{\mu}_{\nu} \frac{\partial X^{\alpha}}{\partial x^{\beta}}.
$$

 \rightsquigarrow Note that all quantities in the derivations must refer to the same space-time event in order to be well-defined.

Extended generating function of type \mathcal{F}_2^{μ} 2

By means of a Legendre transformation

$$
\mathcal{F}_{2}^{\alpha}(a_{\beta}, \tilde{P}^{\beta\nu}, x^{\nu}, \tilde{T}_{\nu}^{\mu}) = \mathcal{F}_{1}^{\alpha}(a_{\beta}, A_{\beta}, x^{\nu}, X^{\nu}) + A_{\beta} \tilde{P}^{\beta\alpha} - X^{\beta} \tilde{T}_{\beta}^{\alpha},
$$

an equivalent set of transformation rules is encountered, hence the

Rules for an extended generating function \mathcal{F}_2^{μ} 2

$$
\tilde{p}^{\beta\mu}=\frac{\partial\mathcal{F}_{2}^{\mu}}{\partial\textit{a}_{\beta}},\ \, A_{\beta}\delta_{\nu}^{\mu}=\frac{\partial\mathcal{F}_{2}^{\mu}}{\partial\tilde{P}^{\beta\nu}},\ \, \tilde{t}_{\nu}^{\,\,\mu}=-\frac{\partial\mathcal{F}_{2}^{\mu}}{\partial x^{\nu}},\ \, X^{\alpha}\delta_{\nu}^{\mu}=-\frac{\partial\mathcal{F}_{2}^{\mu}}{\partial\tilde{\mathcal{T}}_{\alpha}^{\,\,\nu}},\,\, \mathcal{H}_{e}^{\prime}= \mathcal{H}_{e}
$$

There are 6 symmetry relations for \mathcal{F}_{2}^{μ} $\frac{\mu}{2}$ of the type

$$
\frac{\partial \tilde{p}^{\beta\mu}}{\partial \tilde{\rho}^{\alpha\nu}} = \frac{\partial^2 \mathcal{F}_2^{\mu}}{\partial a_{\beta} \partial \tilde{\rho}^{\alpha\nu}} = \delta^{\mu}_{\nu} \frac{\partial A_{\alpha}}{\partial a_{\beta}}, \qquad \frac{\partial \tilde{t}_{\beta}^{\mu}}{\partial \tilde{T}_{\alpha}^{\ \nu}} = -\frac{\partial^2 \mathcal{F}_2^{\mu}}{\partial x^{\beta} \partial \tilde{T}_{\alpha}^{\ \nu}} = \delta^{\mu}_{\nu} \frac{\partial X^{\alpha}}{\partial x^{\beta}}.
$$

 \rightsquigarrow Note that all quantities in the derivations must refer to the same space-time event in order to be well-defined.

Under a coordinate transformation $x^\nu\mapsto X^\nu$, a vector field a_μ transforms as

$$
A_{\mu}(X)=a_{\xi}(x)\frac{\partial x^{\xi}}{\partial X^{\mu}}.
$$

Regarded as a canonical transformation, the mapping of the vector field is generated by

$$
\mathcal{F}_{2}^{\mu}(y)=-\tilde{T}_{\alpha}^{\ \mu}h^{\alpha}(x)+\tilde{P}^{\alpha\beta}(X)\,a_{\xi}(x)\frac{\partial x^{\xi}}{\partial X^{\alpha}}\frac{\partial y^{\mu}}{\partial X^{\beta}}.
$$

We thus get the additional canonical transformation rules

$$
\tilde{p}^{\mu\nu}(x) = \tilde{P}^{\alpha\beta}(X) \frac{\partial x^{\mu}}{\partial X^{\alpha}} \frac{\partial x^{\nu}}{\partial X^{\beta}}
$$

$$
X^{\alpha} = h^{\alpha}(x)
$$

$$
\tilde{t}_{\nu}{}^{\mu} = -\tilde{P}^{\alpha\beta}(X) a_{\xi}(x) \frac{\partial^{2} x^{\xi}}{\partial X^{\alpha} \partial X^{\lambda}} \frac{\partial X^{\lambda}}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial X^{\beta}} + \tilde{T}_{\alpha}{}^{\mu} \frac{\partial h^{\alpha}}{\partial x^{\nu}}.
$$

Under a coordinate transformation $x^\nu\mapsto X^\nu$, a vector field a_μ transforms as

$$
A_{\mu}(X)=a_{\xi}(x)\frac{\partial x^{\xi}}{\partial X^{\mu}}.
$$

Regarded as a canonical transformation, the mapping of the vector field is generated by

$$
\mathcal{F}_{2}^{\mu}(y)=-\tilde{\mathcal{T}}_{\alpha}^{\ \mu}h^{\alpha}(x)+\tilde{P}^{\alpha\beta}(X)\,a_{\xi}(x)\frac{\partial x^{\xi}}{\partial X^{\alpha}}\frac{\partial y^{\mu}}{\partial X^{\beta}}.
$$

We thus get the additional canonical transformation rules

$$
\tilde{p}^{\mu\nu}(x) = \tilde{P}^{\alpha\beta}(X) \frac{\partial x^{\mu}}{\partial X^{\alpha}} \frac{\partial x^{\nu}}{\partial X^{\beta}}
$$

$$
X^{\alpha} = h^{\alpha}(x)
$$

$$
\tilde{t}_{\nu}{}^{\mu} = -\tilde{P}^{\alpha\beta}(X) a_{\xi}(x) \frac{\partial^{2} x^{\xi}}{\partial X^{\alpha} \partial X^{\lambda}} \frac{\partial X^{\lambda}}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial X^{\beta}} + \tilde{T}_{\alpha}{}^{\mu} \frac{\partial h^{\alpha}}{\partial x^{\nu}}.
$$

Under a coordinate transformation $x^\nu\mapsto X^\nu$, a vector field a_μ transforms as

$$
A_{\mu}(X)=a_{\xi}(x)\frac{\partial x^{\xi}}{\partial X^{\mu}}.
$$

Regarded as a canonical transformation, the mapping of the vector field is generated by

$$
\mathcal{F}_{2}^{\mu}(y)=-\tilde{\mathcal{T}}_{\alpha}^{\ \mu}h^{\alpha}(x)+\tilde{P}^{\alpha\beta}(X)\,a_{\xi}(x)\frac{\partial x^{\xi}}{\partial X^{\alpha}}\frac{\partial y^{\mu}}{\partial X^{\beta}}.
$$

We thus get the additional canonical transformation rules

$$
\tilde{p}^{\mu\nu}(x) = \tilde{P}^{\alpha\beta}(X) \frac{\partial x^{\mu}}{\partial X^{\alpha}} \frac{\partial x^{\nu}}{\partial X^{\beta}}
$$

$$
X^{\alpha} = h^{\alpha}(x)
$$

$$
\tilde{t}_{\nu}^{\mu} = -\tilde{P}^{\alpha\beta}(X) a_{\xi}(x) \frac{\partial^{2} x^{\xi}}{\partial X^{\alpha} \partial X^{\lambda}} \frac{\partial X^{\lambda}}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial X^{\beta}} + \tilde{T}_{\alpha}^{\mu} \frac{\partial h^{\alpha}}{\partial x^{\nu}}.
$$

Under a coordinate transformation $x^\nu\mapsto X^\nu$, a vector field a_μ transforms as

$$
A_{\mu}(X)=a_{\xi}(x)\frac{\partial x^{\xi}}{\partial X^{\mu}}.
$$

Regarded as a canonical transformation, the mapping of the vector field is generated by

$$
\mathcal{F}_{2}^{\mu}(y)=-\tilde{\mathcal{T}}_{\alpha}^{\ \mu}h^{\alpha}(x)+\tilde{P}^{\alpha\beta}(X)\,a_{\xi}(x)\frac{\partial x^{\xi}}{\partial X^{\alpha}}\frac{\partial y^{\mu}}{\partial X^{\beta}}.
$$

We thus get the additional canonical transformation rules

$$
\tilde{p}^{\mu\nu}(x) = \tilde{P}^{\alpha\beta}(X) \frac{\partial x^{\mu}}{\partial X^{\alpha}} \frac{\partial x^{\nu}}{\partial X^{\beta}}
$$

$$
X^{\alpha} = h^{\alpha}(x)
$$

$$
\tilde{t}_{\nu}{}^{\mu} = -\tilde{P}^{\alpha\beta}(X) a_{\xi}(x) \frac{\partial^{2} x^{\xi}}{\partial X^{\alpha} \partial X^{\lambda}} \frac{\partial X^{\lambda}}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial X^{\beta}} + \tilde{T}_{\alpha}{}^{\mu} \frac{\partial h^{\alpha}}{\partial x^{\nu}}.
$$

Transformation rule for the Hamiltonians

According to the general prescription, the Hamiltonians transform as

$$
\mathcal{H}' \det \Lambda' = \mathcal{H} \det \Lambda + \tilde{P}^{\alpha \beta}(X) A_{\lambda}(X) \frac{\partial^2 x^{\xi}}{\partial X^{\alpha} \partial X^{\beta}} \frac{\partial X^{\lambda}}{\partial x^{\xi}}.
$$

 \rightsquigarrow The Hamiltonians do not maintain their form if $\partial^2 x^\xi/\partial X^\alpha \partial X^\beta \neq 0.$ In order to find the desired form-invariant Hamiltonian, we must formally introduce "gauge Hamiltonians" \mathcal{H}_{g} as

 $\mathcal{H}_{\mathrm{g}}'$ det $\mathsf{\Lambda}' = \tilde{P}^{\alpha\beta}(X) \, \mathsf{A}_{\lambda}(X) \, \Gamma^{\lambda}{}_{\alpha\beta}(X), \qquad \mathcal{H}_{\mathrm{g}} \, \mathsf{det} \, \mathsf{\Lambda} = \tilde{p}^{\alpha\beta}(x) \, \mathsf{a}_{\lambda}(x) \, \gamma^{\lambda}{}_{\alpha\beta}(x)$

The amended Hamiltonian $(\mathcal{H} + \mathcal{H}_{g})$ det A is then form-invariant, provided that the formally introduced gauge coefficients transform as

$$
\Gamma^{\lambda}_{\alpha\beta}(X)=\gamma^{k}_{ij}(x)\frac{\partial x^{i}}{\partial X^{\alpha}}\frac{\partial x^{j}}{\partial X^{\beta}}\frac{\partial X^{\lambda}}{\partial x^{k}}+\frac{\partial^{2}x^{\xi}}{\partial X^{\alpha}\partial X^{\beta}}\frac{\partial X^{\lambda}}{\partial x^{\xi}}.
$$

 \rightsquigarrow The gauge coefficients are treated as external "fields".

Transformation rule for the Hamiltonians

According to the general prescription, the Hamiltonians transform as

$$
\mathcal{H}' \det \Lambda' = \mathcal{H} \det \Lambda + \tilde{P}^{\alpha \beta}(X) A_{\lambda}(X) \frac{\partial^2 x^{\xi}}{\partial X^{\alpha} \partial X^{\beta}} \frac{\partial X^{\lambda}}{\partial x^{\xi}}.
$$

 \rightsquigarrow The Hamiltonians do not maintain their form if $\partial^2 x^\xi/\partial X^\alpha \partial X^\beta \neq 0.$ In order to find the desired form-invariant Hamiltonian, we must formally introduce "gauge Hamiltonians" \mathcal{H}_{g} as

$$
\mathcal{H}_\mathrm{g}' \det \mathsf{\Lambda}' = \tilde{\mathsf{P}}^{\alpha \beta}(X) \, A_\lambda(X) \, \overline{\mathsf{L}}^\lambda_{\, \alpha \beta}(X), \qquad \mathcal{H}_\mathrm{g} \det \mathsf{\Lambda} = \tilde{\mathsf{p}}^{\alpha \beta}(x) \, \mathsf{a}_\lambda(x) \, \gamma^\lambda_{\, \, \alpha \beta}(x)
$$

The amended Hamiltonian $(\mathcal{H} + \mathcal{H}_{g})$ det A is then form-invariant, provided that the formally introduced gauge coefficients transform as

$$
\Gamma^{\lambda}_{\alpha\beta}(X)=\gamma^{k}_{ij}(x)\frac{\partial x^{i}}{\partial X^{\alpha}}\frac{\partial x^{j}}{\partial X^{\beta}}\frac{\partial X^{\lambda}}{\partial x^{k}}+\frac{\partial^{2}x^{\xi}}{\partial X^{\alpha}\partial X^{\beta}}\frac{\partial X^{\lambda}}{\partial x^{\xi}}.
$$

 \rightsquigarrow The gauge coefficients are treated as external "fields".

Transformation rule for the Hamiltonians

According to the general prescription, the Hamiltonians transform as

$$
\mathcal{H}' \det \Lambda' = \mathcal{H} \det \Lambda + \tilde{P}^{\alpha \beta}(X) A_{\lambda}(X) \frac{\partial^2 x^{\xi}}{\partial X^{\alpha} \partial X^{\beta}} \frac{\partial X^{\lambda}}{\partial x^{\xi}}.
$$

 \rightsquigarrow The Hamiltonians do not maintain their form if $\partial^2 x^\xi/\partial X^\alpha \partial X^\beta \neq 0.$ In order to find the desired form-invariant Hamiltonian, we must formally introduce "gauge Hamiltonians" \mathcal{H}_{g} as

$$
\mathcal{H}'_{\mathrm{g}} \det \Lambda' = \tilde{P}^{\alpha \beta}(X) \, A_{\lambda}(X) \, \Gamma^{\lambda}_{\ \alpha \beta}(X), \qquad \mathcal{H}_{\mathrm{g}} \det \Lambda = \tilde{p}^{\alpha \beta}(x) \, a_{\lambda}(x) \, \gamma^{\lambda}_{\ \alpha \beta}(x)
$$

The amended Hamiltonian $(\mathcal{H} + \mathcal{H}_{g})$ det Λ is then form-invariant, provided that the formally introduced gauge coefficients transform as

$$
\Gamma^{\lambda}_{\alpha\beta}(X)=\gamma^{k}_{ij}(x)\frac{\partial x^{i}}{\partial X^{\alpha}}\frac{\partial x^{j}}{\partial X^{\beta}}\frac{\partial X^{\lambda}}{\partial x^{k}}+\frac{\partial^{2}x^{\xi}}{\partial X^{\alpha}\partial X^{\beta}}\frac{\partial X^{\lambda}}{\partial x^{\xi}}.
$$

 \rightsquigarrow The gauge coefficients are treated as external "fields".
According to the general prescription, the Hamiltonians transform as

$$
\mathcal{H}' \det \Lambda' = \mathcal{H} \det \Lambda + \tilde{P}^{\alpha \beta}(X) A_{\lambda}(X) \frac{\partial^2 x^{\xi}}{\partial X^{\alpha} \partial X^{\beta}} \frac{\partial X^{\lambda}}{\partial x^{\xi}}.
$$

 \rightsquigarrow The Hamiltonians do not maintain their form if $\partial^2 x^\xi/\partial X^\alpha \partial X^\beta \neq 0.$ In order to find the desired form-invariant Hamiltonian, we must formally introduce "gauge Hamiltonians" \mathcal{H}_{g} as

$$
\mathcal{H}_\mathrm{g}' \det \mathsf{\Lambda}' = \tilde{\mathsf{P}}^{\alpha \beta}(X) \, A_\lambda(X) \, \mathsf{\Gamma}^\lambda_{ \alpha \beta}(X), \qquad \mathcal{H}_\mathrm{g} \det \mathsf{\Lambda} = \tilde{\mathsf{p}}^{\alpha \beta}(x) \, \mathsf{a}_\lambda(x) \, \gamma^\lambda_{ \alpha \beta}(x)
$$

The amended Hamiltonian $(\mathcal{H} + \mathcal{H}_{g})$ det Λ is then form-invariant, provided that the formally introduced gauge coefficients transform as

$$
\Gamma^{\lambda}_{\alpha\beta}(X)=\gamma^k_{ij}(x)\frac{\partial x^i}{\partial X^{\alpha}}\frac{\partial x^j}{\partial X^{\beta}}\frac{\partial X^{\lambda}}{\partial x^k}+\frac{\partial^2 x^{\xi}}{\partial X^{\alpha}\partial X^{\beta}}\frac{\partial X^{\lambda}}{\partial x^{\xi}}.
$$

 \rightarrow The gauge coefficients are treated as external "fields".

We include the description of the dynamics of the gauge coefficients by incorporating their transformation rule into the CT's generating function

$$
\bar{\mathcal{F}}_2^{\mu} = \mathcal{F}_2^{\mu} + g_1 \, \tilde{Q}_{\eta}{}^{\alpha\xi\lambda} \frac{\partial y^{\mu}}{\partial X^{\lambda}} \left(\gamma^k_{ij} \frac{\partial X^{\eta}}{\partial x^k} \frac{\partial x^i}{\partial X^{\alpha}} \frac{\partial x^j}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^k} \frac{\partial^2 x^k}{\partial X^{\alpha} \partial X^{\xi}} \right),
$$

with $\tilde{Q}_\eta^{\,\,\,\,\alpha\xi\mu}$ the canonical conjugates of the gauge fields $\Gamma^\eta_{\,\,\,\alpha\xi}$ and g_1 a dimensionless coupling constant.

-
-
-

We include the description of the dynamics of the gauge coefficients by incorporating their transformation rule into the CT's generating function

$$
\bar{\mathcal{F}}_2^{\mu} = \mathcal{F}_2^{\mu} + g_1 \, \tilde{Q}_{\eta}{}^{\alpha\xi\lambda} \frac{\partial y^{\mu}}{\partial X^{\lambda}} \left(\gamma^k_{ij} \frac{\partial X^{\eta}}{\partial x^k} \frac{\partial x^i}{\partial X^{\alpha}} \frac{\partial x^j}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^k} \frac{\partial^2 x^k}{\partial X^{\alpha} \partial X^{\xi}} \right),
$$

with $\tilde{Q}_\eta^{\,\,\,\,\alpha\xi\mu}$ the canonical conjugates of the gauge fields $\Gamma^\eta_{\,\,\,\alpha\xi}$ and g_1 a dimensionless coupling constant.

- The amended generating function $\bar{\mathcal{F}}^{\mu}_2$ now defines the transformation rule for the vector fields a_μ and for the gauge coefficients $\gamma^\eta_{\ \alpha\xi}$.
- As a feature of the canonical formalism, the generating function s imultaneously defines the rules for the respective conjugates, $\tilde{p}^{\mu\nu}$ and ${\tilde{q}}_{\eta}^{\,\,\,\,\alpha\xi\lambda}$, and for the Hamiltonian.
- This additional structure ensures the action principle to be maintained.

We include the description of the dynamics of the gauge coefficients by incorporating their transformation rule into the CT's generating function

$$
\bar{\mathcal{F}}_2^{\mu} = \mathcal{F}_2^{\mu} + g_1 \, \tilde{Q}_{\eta}{}^{\alpha\xi\lambda} \frac{\partial y^{\mu}}{\partial X^{\lambda}} \left(\gamma^k_{ij} \frac{\partial X^{\eta}}{\partial x^k} \frac{\partial x^i}{\partial X^{\alpha}} \frac{\partial x^j}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^k} \frac{\partial^2 x^k}{\partial X^{\alpha} \partial X^{\xi}} \right),
$$

with $\tilde{Q}_\eta^{\,\,\,\,\alpha\xi\mu}$ the canonical conjugates of the gauge fields $\Gamma^\eta_{\,\,\,\alpha\xi}$ and g_1 a dimensionless coupling constant.

- The amended generating function $\bar{\mathcal{F}}^{\mu}_2$ now defines the transformation rule for the vector fields a_μ and for the gauge coefficients $\gamma^\eta_{\ \alpha\xi}$.
- As a feature of the canonical formalism, the generating function $\mathsf{simultaneously}$ defines the rules for the respective conjugates, $\tilde{p}^{\mu\nu}$ and ${\tilde{q}}_{\eta}^{\,\,\,\,\alpha\xi\lambda}$, and for the Hamiltonian.

This additional structure ensures the action principle to be maintained.

We include the description of the dynamics of the gauge coefficients by incorporating their transformation rule into the CT's generating function

$$
\bar{\mathcal{F}}_2^{\mu} = \mathcal{F}_2^{\mu} + g_1 \, \tilde{Q}_{\eta}{}^{\alpha\xi\lambda} \frac{\partial y^{\mu}}{\partial X^{\lambda}} \left(\gamma^k_{ij} \frac{\partial X^{\eta}}{\partial x^k} \frac{\partial x^i}{\partial X^{\alpha}} \frac{\partial x^j}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^k} \frac{\partial^2 x^k}{\partial X^{\alpha} \partial X^{\xi}} \right),
$$

with $\tilde{Q}_\eta^{\,\,\,\,\alpha\xi\mu}$ the canonical conjugates of the gauge fields $\Gamma^\eta_{\,\,\,\alpha\xi}$ and g_1 a dimensionless coupling constant.

- The amended generating function $\bar{\mathcal{F}}^{\mu}_2$ now defines the transformation rule for the vector fields a_μ and for the gauge coefficients $\gamma^\eta_{\ \alpha\xi}$.
- As a feature of the canonical formalism, the generating function $\mathsf{simultaneously}$ defines the rules for the respective conjugates, $\tilde{p}^{\mu\nu}$ and ${\tilde{q}}_{\eta}^{\,\,\,\,\alpha\xi\lambda}$, and for the Hamiltonian.
- This additional structure ensures the action principle to be maintained.

The additional transformation rules are:

$$
\Gamma^{\eta}_{\alpha\xi} = \gamma^{k}_{ij} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}}
$$
\n
$$
\tilde{q}_{k}^{ij\mu} = \tilde{Q}_{\eta}^{\alpha\xi\lambda} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial x^{\mu}}{\partial X^{\lambda}}
$$
\n
$$
\tilde{t}_{\nu}^{\mu} = -\tilde{P}^{\alpha\beta}(X) a_{\xi}(x) \frac{\partial^{2} x^{\xi}}{\partial X^{\alpha} \partial X^{\lambda}} \frac{\partial x^{\lambda}}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial X^{\beta}} + \tilde{T}_{\alpha}^{\mu} \frac{\partial h^{\alpha}}{\partial x^{\nu}}
$$
\n
$$
- \tilde{Q}_{\eta}^{\alpha\xi\lambda} \frac{\partial y^{\mu}}{\partial X^{\lambda}} \left[\gamma^{k}_{ij} \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \right) + \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \right) \right]
$$

-
-
-

The additional transformation rules are:

$$
\Gamma^{\eta}_{\alpha\xi} = \gamma^{k}_{ij} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}}
$$
\n
$$
\tilde{q}_{k}^{ij\mu} = \tilde{Q}_{\eta}^{\alpha\xi\lambda} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial x^{\mu}}{\partial X^{\lambda}}
$$
\n
$$
\tilde{t}_{\nu}^{\mu} = -\tilde{P}^{\alpha\beta}(X) a_{\xi}(x) \frac{\partial^{2} x^{\xi}}{\partial X^{\alpha} \partial X^{\lambda}} \frac{\partial X^{\lambda}}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial X^{\beta}} + \tilde{T}_{\alpha}^{\mu} \frac{\partial h^{\alpha}}{\partial x^{\nu}}
$$
\n
$$
- \tilde{Q}_{\eta}^{\alpha\xi\lambda} \frac{\partial y^{\mu}}{\partial X^{\lambda}} \left[\gamma^{k}_{ij} \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \right) + \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \right) \right]
$$

- The required transformation rule for the connection coefficients γ^{η} *αξ* is reproduced.
- Their conjugates ${\tilde q_{\eta}}^{\alpha\xi\mu}$ transform as a tensor!
- The last rule defines the transformation of the amended Hamiltonians.

The additional transformation rules are:

$$
\Gamma^{\eta}_{\alpha\xi} = \gamma^{k}_{ij} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}}
$$
\n
$$
\tilde{q}_{k}^{ij\mu} = \tilde{Q}_{\eta}^{\alpha\xi\lambda} \frac{\partial X^{\eta}}{\partial X^{\alpha}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial x^{\mu}}{\partial X^{\lambda}}
$$
\n
$$
\tilde{t}_{\nu}^{\mu} = -\tilde{P}^{\alpha\beta}(X) a_{\xi}(x) \frac{\partial^{2} x^{\xi}}{\partial X^{\alpha} \partial X^{\lambda}} \frac{\partial X^{\lambda}}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial X^{\beta}} + \tilde{T}_{\alpha}^{\mu} \frac{\partial h^{\alpha}}{\partial x^{\nu}}
$$
\n
$$
- \tilde{Q}_{\eta}^{\alpha\xi\lambda} \frac{\partial y^{\mu}}{\partial X^{\lambda}} \left[\gamma^{k}_{ij} \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \right) + \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \right) \right]
$$

- The required transformation rule for the connection coefficients γ^{η} *αξ* is reproduced.
- Their conjugates ${\tilde q_{\eta}}^{\alpha\xi\mu}$ transform as a tensor!
- The last rule defines the transformation of the amended Hamiltonians.

The additional transformation rules are:

$$
\Gamma^{\eta}_{\alpha\xi} = \gamma^{k}_{ij} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}}
$$
\n
$$
\tilde{q}_{k}^{ij\mu} = \tilde{Q}_{\eta}^{\alpha\xi\lambda} \frac{\partial X^{\eta}}{\partial X^{\alpha}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial x^{\mu}}{\partial X^{\lambda}}
$$
\n
$$
\tilde{t}_{\nu}^{\mu} = -\tilde{P}^{\alpha\beta}(X) a_{\xi}(x) \frac{\partial^{2} x^{\xi}}{\partial X^{\alpha} \partial X^{\lambda}} \frac{\partial X^{\lambda}}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial X^{\beta}} + \tilde{T}_{\alpha}^{\mu} \frac{\partial h^{\alpha}}{\partial x^{\nu}}
$$
\n
$$
- \tilde{Q}_{\eta}^{\alpha\xi\lambda} \frac{\partial y^{\mu}}{\partial X^{\lambda}} \left[\gamma^{k}_{ij} \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \right) + \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \right) \right]
$$

- The required transformation rule for the connection coefficients γ^{η} *αξ* is reproduced.
- Their conjugates ${\tilde q_{\eta}}^{\alpha\xi\mu}$ transform as a tensor!
- The last rule defines the transformation of the amended Hamiltonians.

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X^μ and x^μ in terms of the gauge coefficients $\gamma^\eta_{\;\;\alpha\xi}$ and $\Gamma^\eta_{\;\;\alpha\xi}$, and their conjugates, $\tilde q_\eta^{\;\;\alpha\xi\mu}$ and $\tilde Q_\eta^{\;\;\alpha\xi\mu}$, according to the canonical transformation rules.

Remarkably, this works well: all terms match up perfectly. The result is: \mathcal{H}^{\prime} det $\mathcal{N}-\mathcal{H}$ det $\mathcal{\Lambda}=\frac{1}{2}\tilde{\mathsf{Q}}_{\eta}^{\alpha\xi\mu}$ *∂*Γ *η* $\frac{\alpha_{\varsigma}}{\partial X^{\mu}}$ + *∂*Γ *η αµ* $\frac{\partial \Gamma}{\partial X^{\xi}} - \Gamma^{i}{}_{\alpha\xi}\Gamma^{\eta}{}_{i\mu} + \Gamma^{i}{}_{\alpha\mu}\Gamma^{\eta}{}_{i\mu}$! $\frac{1}{2}\tilde{q}_{\eta}^{\ \ \alpha\xi\mu}$ *∂γ^η αξ* $\frac{\partial}{\partial x^{\mu}}$ + *∂γ^η αµ* $\frac{\partial^T \alpha \mu}{\partial x^{\xi}} - \gamma^i{}_{\alpha\xi} \gamma^{\eta}{}_{i\mu} + \gamma^i{}_{\alpha\mu} \gamma^{\eta}{}_{i\mu}$! $+ \, \tilde{\mathsf{P}}^{\alpha \beta} \, A_{\lambda} \, \mathsf{\Gamma}^{\lambda}_{\,\,\alpha \beta} - \tilde{\mathsf{p}}^{\alpha \beta} \, a_{\lambda} \, \gamma^{\lambda}_{\,\,\alpha \beta}$

-
-

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X^μ and x^μ in terms of the gauge coefficients $\gamma^\eta_{\;\;\alpha\xi}$ and $\Gamma^\eta_{\;\;\alpha\xi}$, and their conjugates, $\tilde q_\eta^{\;\;\alpha\xi\mu}$ and $\tilde Q_\eta^{\;\;\alpha\xi\mu}$, according to the canonical transformation rules.

Remarkably, this works well: all terms match up perfectly. The result is:

$$
\mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda = \frac{1}{2} \tilde{Q}_{\eta}{}^{\alpha \xi \mu} \left(\frac{\partial \Gamma^{\eta}{}_{\alpha \xi}}{\partial X^{\mu}} + \frac{\partial \Gamma^{\eta}{}_{\alpha \mu}}{\partial X^{\xi}} - \Gamma^{i}{}_{\alpha \xi} \Gamma^{\eta}{}_{i\mu} + \Gamma^{i}{}_{\alpha \mu} \Gamma^{\eta}{}_{i\xi} \right) - \frac{1}{2} \tilde{q}_{\eta}{}^{\alpha \xi \mu} \left(\frac{\partial \gamma^{\eta}{}_{\alpha \xi}}{\partial x^{\mu}} + \frac{\partial \gamma^{\eta}{}_{\alpha \mu}}{\partial x^{\xi}} - \gamma^{i}{}_{\alpha \xi} \gamma^{\eta}{}_{i\mu} + \gamma^{i}{}_{\alpha \mu} \gamma^{\eta}{}_{i\xi} \right) + \tilde{P}^{\alpha \beta} A_{\lambda} \Gamma^{\lambda}{}_{\alpha \beta} - \tilde{P}^{\alpha \beta} a_{\lambda} \gamma^{\lambda}{}_{\alpha \beta}
$$

-
-

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X^μ and x^μ in terms of the gauge coefficients $\gamma^\eta_{\;\;\alpha\xi}$ and $\Gamma^\eta_{\;\;\alpha\xi}$, and their conjugates, $\tilde q_\eta^{\;\;\alpha\xi\mu}$ and $\tilde Q_\eta^{\;\;\alpha\xi\mu}$, according to the canonical transformation rules.

Remarkably, this works well: all terms match up perfectly. The result is:

$$
\mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda = \frac{1}{2} \tilde{Q}_{\eta}{}^{\alpha \xi \mu} \left(\frac{\partial \Gamma^{\eta}{}_{\alpha \xi}}{\partial X^{\mu}} + \frac{\partial \Gamma^{\eta}{}_{\alpha \mu}}{\partial X^{\xi}} - \Gamma^{i}{}_{\alpha \xi} \Gamma^{\eta}{}_{i\mu} + \Gamma^{i}{}_{\alpha \mu} \Gamma^{\eta}{}_{i\xi} \right) - \frac{1}{2} \tilde{q}_{\eta}{}^{\alpha \xi \mu} \left(\frac{\partial \gamma^{\eta}{}_{\alpha \xi}}{\partial x^{\mu}} + \frac{\partial \gamma^{\eta}{}_{\alpha \mu}}{\partial x^{\xi}} - \gamma^{i}{}_{\alpha \xi} \gamma^{\eta}{}_{i\mu} + \gamma^{i}{}_{\alpha \mu} \gamma^{\eta}{}_{i\xi} \right) + \tilde{P}^{\alpha \beta} A_{\lambda} \Gamma^{\lambda}{}_{\alpha \beta} - \tilde{P}^{\alpha \beta} a_{\lambda} \gamma^{\lambda}{}_{\alpha \beta}
$$

- The terms emerge in a symmetric form with opposite sign in the original and the transformed dynamical variables.
- No new gauge quantities are required, hence, the dynamical system is now closed.

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X^μ and x^μ in terms of the gauge coefficients $\gamma^\eta_{\;\;\alpha\xi}$ and $\Gamma^\eta_{\;\;\alpha\xi}$, and their conjugates, $\tilde q_\eta^{\;\;\alpha\xi\mu}$ and $\tilde Q_\eta^{\;\;\alpha\xi\mu}$, according to the canonical transformation rules.

Remarkably, this works well: all terms match up perfectly. The result is:

$$
\mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda = \frac{1}{2} \tilde{Q}_{\eta}{}^{\alpha \xi \mu} \left(\frac{\partial \Gamma^{\eta}{}_{\alpha \xi}}{\partial X^{\mu}} + \frac{\partial \Gamma^{\eta}{}_{\alpha \mu}}{\partial X^{\xi}} - \Gamma^{i}{}_{\alpha \xi} \Gamma^{\eta}{}_{i\mu} + \Gamma^{i}{}_{\alpha \mu} \Gamma^{\eta}{}_{i\xi} \right) - \frac{1}{2} \tilde{q}_{\eta}{}^{\alpha \xi \mu} \left(\frac{\partial \gamma^{\eta}{}_{\alpha \xi}}{\partial x^{\mu}} + \frac{\partial \gamma^{\eta}{}_{\alpha \mu}}{\partial x^{\xi}} - \gamma^{i}{}_{\alpha \xi} \gamma^{\eta}{}_{i\mu} + \gamma^{i}{}_{\alpha \mu} \gamma^{\eta}{}_{i\xi} \right) + \tilde{P}^{\alpha \beta} A_{\lambda} \Gamma^{\lambda}{}_{\alpha \beta} - \tilde{P}^{\alpha \beta} a_{\lambda} \gamma^{\lambda}{}_{\alpha \beta}
$$

- The terms emerge in a symmetric form with opposite sign in the original and the transformed dynamical variables.
- No new gauge quantities are required, hence, the dynamical system is now closed.

Final form-invariant Hamiltonian

Similar to conventional gauge theories, the final form-invariant Hamiltonian must contain in addition a dynamics term $\mathcal{H}_{e, dyn}$ to allow for a non-static space-time. Furthermore

$$
\mathcal{H}^{\prime}_{\mathrm{e},\mathrm{dyn}}(\tilde{\mathsf{Q}}) = \mathcal{H}_{\mathrm{e},\mathrm{dyn}}(\tilde{\mathsf{q}})
$$

must hold in order for the final extended Hamiltonians to satisfy the required transformation rule $\mathcal{H}_{\mathrm{e}}^{\prime}=\mathcal{H}_{\mathrm{e}}$.

The final form-invariant extended Hamiltonian is now given by

$$
\mathcal{H}_{e,GR} (a, \tilde{p}, \tilde{r}, \gamma, \tilde{q}, \tilde{t}) = \mathcal{H}_{e} (a, \tilde{p}, \tilde{t}) - \frac{1}{2} g_1 \mathcal{H}_{e, dyn} (\tilde{q}) + \tilde{p}^{\alpha \beta} a_{\lambda} \gamma^{\lambda}_{\alpha \beta} + \frac{1}{2} g_1 \tilde{q}_{\eta}^{\alpha \xi \mu} \left(\frac{\partial \gamma^{\eta}_{\alpha \mu}}{\partial y^{\xi}} + \frac{\partial \gamma^{\eta}_{\alpha \xi}}{\partial y^{\mu}} + \gamma^k_{\alpha \mu} \gamma^{\eta}_{\kappa \xi} - \gamma^k_{\alpha \xi} \gamma^{\eta}_{\kappa \mu} \right)
$$

Final form-invariant Hamiltonian

Similar to conventional gauge theories, the final form-invariant Hamiltonian must contain in addition a dynamics term He*,*dyn to allow for a non-static space-time. Furthermore

$$
\mathcal{H}^{\prime}_{\mathrm{e},\mathrm{dyn}}(\tilde{\mathsf{Q}}) = \mathcal{H}_{\mathrm{e},\mathrm{dyn}}(\tilde{\mathsf{q}})
$$

must hold in order for the final extended Hamiltonians to satisfy the required transformation rule $\mathcal{H}_{\mathrm{e}}^{\prime}=\mathcal{H}_{\mathrm{e}}$.

The final form-invariant extended Hamiltonian is now given by

$$
\mathcal{H}_{e,GR} (a, \tilde{p}, \tilde{r}, \gamma, \tilde{q}, \tilde{t}) = \mathcal{H}_{e} (a, \tilde{p}, \tilde{t}) - \frac{1}{2} g_1 \mathcal{H}_{e, dyn} (\tilde{q}) + \tilde{p}^{\alpha \beta} a_{\lambda} \gamma^{\lambda}_{\alpha \beta} + \frac{1}{2} g_1 \tilde{q}_{\eta}^{\alpha \xi \mu} \left(\frac{\partial \gamma^{\eta}_{\alpha \mu}}{\partial y^{\xi}} + \frac{\partial \gamma^{\eta}_{\alpha \xi}}{\partial y^{\mu}} + \gamma^k_{\alpha \mu} \gamma^{\eta}_{\ k \xi} - \gamma^k_{\alpha \xi} \gamma^{\eta}_{\ k \mu} \right)
$$

Canonical equation for $a_{\mu}, p^{\mu\nu}$

Due to the coupling term $\tilde{p}^{\alpha\beta}$ $a_\eta \, \gamma^\eta_{\;\alpha\beta}$ in $\mathcal{H}_{\rm e,GR}$, the field equations for a_μ and $p^{\mu\nu}$ acquire an additional term

$$
\frac{\partial a_{\nu}}{\partial y^{\mu}} = \frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial \tilde{p}^{\nu \mu}} = \frac{\partial \mathcal{H}}{\partial p^{\nu \mu}} + a_{\eta} \gamma^{\eta}{}_{\nu \mu}
$$

$$
\frac{\partial \tilde{p}^{\nu \beta}}{\partial y^{\beta}} = -\frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial a_{\nu}} = -\frac{\partial \mathcal{H}}{\partial a_{\nu}} \det \Lambda - \tilde{p}^{\alpha \beta} \gamma^{\nu}{}_{\alpha \beta}.
$$

If we now interpret the $\gamma^\nu_{\,\,\alpha\beta}$ as affine connections, then the partial derivatives of the fields and the terms proportional to *γ* can be combined to yield covariant derivatives, which yields the tensor equations

$$
a_{\nu;\mu}=\frac{\partial \mathcal{H}}{\partial p^{\nu\mu}},\qquad p^{\nu\beta}_{\quad;\beta}=-\frac{\partial \mathcal{H}}{\partial a_{\nu}}.
$$

The coupling term in $\mathcal{H}_{\rm e,GR}$ thus converts the non-tensor equations for a_μ and $p^{\mu\nu}$ emerging from ${\cal H}$ into tensor equations, provided that the gauge $\overline{\mathrm{coeff}}$ coefficients $\gamma^\nu_{\;\alpha\beta}$ are interpreted as affine connections.

Canonical equation for $a_{\mu}, p^{\mu\nu}$

Due to the coupling term $\tilde{p}^{\alpha\beta}$ $a_\eta \, \gamma^\eta_{\;\alpha\beta}$ in $\mathcal{H}_{\rm e,GR}$, the field equations for a_μ and $p^{\mu\nu}$ acquire an additional term

$$
\frac{\partial a_{\nu}}{\partial y^{\mu}} = \frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial \tilde{p}^{\nu \mu}} = \frac{\partial \mathcal{H}}{\partial p^{\nu \mu}} + a_{\eta} \gamma^{\eta}{}_{\nu \mu}
$$

$$
\frac{\partial \tilde{p}^{\nu \beta}}{\partial y^{\beta}} = -\frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial a_{\nu}} = -\frac{\partial \mathcal{H}}{\partial a_{\nu}} \det \Lambda - \tilde{p}^{\alpha \beta} \gamma^{\nu}{}_{\alpha \beta}.
$$

If we now interpret the $\gamma^\nu_{\,\,\alpha\beta}$ as affine connections, then the partial derivatives of the fields and the terms proportional to *γ* can be combined to yield covariant derivatives, which yields the tensor equations

$$
\mathsf{a}_{\nu;\mu}=\frac{\partial \mathcal{H}}{\partial \rho^{\nu \mu}}, \qquad {\rho^{\nu \beta}}_{;\beta}=-\frac{\partial \mathcal{H}}{\partial \mathsf{a}_\nu}.
$$

The coupling term in $\mathcal{H}_{\rm e,GR}$ thus converts the non-tensor equations for a_μ and $p^{\mu\nu}$ emerging from ${\cal H}$ into tensor equations, provided that the gauge $\overline{\mathrm{coeff}}$ coefficients $\gamma^\nu_{\;\alpha\beta}$ are interpreted as affine connections.

Canonical equation for $a_{\mu}, p^{\mu\nu}$

Due to the coupling term $\tilde{p}^{\alpha\beta}$ $a_\eta \, \gamma^\eta_{\;\alpha\beta}$ in $\mathcal{H}_{\rm e,GR}$, the field equations for a_μ and $p^{\mu\nu}$ acquire an additional term

$$
\frac{\partial a_{\nu}}{\partial y^{\mu}} = \frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial \tilde{p}^{\nu \mu}} = \frac{\partial \mathcal{H}}{\partial p^{\nu \mu}} + a_{\eta} \gamma^{\eta}{}_{\nu \mu}
$$

$$
\frac{\partial \tilde{p}^{\nu \beta}}{\partial y^{\beta}} = -\frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial a_{\nu}} = -\frac{\partial \mathcal{H}}{\partial a_{\nu}} \det \Lambda - \tilde{p}^{\alpha \beta} \gamma^{\nu}{}_{\alpha \beta}.
$$

If we now interpret the $\gamma^\nu_{\,\,\alpha\beta}$ as affine connections, then the partial derivatives of the fields and the terms proportional to *γ* can be combined to yield covariant derivatives, which yields the tensor equations

$$
a_{\nu;\mu}=\frac{\partial \mathcal{H}}{\partial p^{\nu\mu}},\qquad p^{\nu\beta}_{}=-\frac{\partial \mathcal{H}}{\partial a_{\nu}}.
$$

The coupling term in $\mathcal{H}_{\text{e,GR}}$ thus converts the non-tensor equations for a_{μ} and $p^{\mu\nu}$ emerging from ${\cal H}$ into tensor equations, provided that the gauge $\mathsf{coefficients}\ \gamma^\nu_{\ \alpha\beta}\,$ are interpreted as affine connections.

The canonical equation for the gauge coefficients follows as

$$
\frac{\partial \gamma^{\eta}{}_{\alpha\xi}}{\partial y^{\mu}} = \frac{\partial \mathcal{H}_{e,GR}}{\partial (g_1 \tilde{q}_{\eta}{}^{\alpha\xi\mu})} \n= -\frac{1}{2} \frac{\partial \mathcal{H}_{e,dyn}}{\partial \tilde{q}_{\eta}{}^{\alpha\xi\mu}} + \frac{1}{2} \left(\frac{\partial \gamma^{\eta}{}_{\alpha\mu}}{\partial y^{\xi}} + \frac{\partial \gamma^{\eta}{}_{\alpha\xi}}{\partial y^{\mu}} + \gamma^k{}_{\alpha\mu} \gamma^{\eta}{}_{k\xi} - \gamma^k{}_{\alpha\xi} \gamma^{\eta}{}_{k\mu} \right)
$$

Solved for He*,*dyn, one finds exactly the representation of the

$$
\frac{\partial \mathcal{H}_{e, dyn}}{\partial \tilde{q}_{\eta}{}^{\alpha \xi \mu}} = \frac{\partial \gamma^{\eta}{}_{\alpha \mu}}{\partial y^{\xi}} - \frac{\partial \gamma^{\eta}{}_{\alpha \xi}}{\partial y^{\mu}} + \gamma^{k}{}_{\alpha \mu} \gamma^{\eta}{}_{k\xi} - \gamma^{k}{}_{\alpha \xi} \gamma^{\eta}{}_{k\mu} = r^{\eta}{}_{\alpha \xi \beta} (\gamma, \partial \gamma)
$$

The canonical equation for the gauge coefficients follows as

$$
\frac{\partial \gamma^{\eta}{}_{\alpha\xi}}{\partial y^{\mu}} = \frac{\partial \mathcal{H}_{e,GR}}{\partial (g_1 \tilde{q}_{\eta}{}^{\alpha\xi\mu})} \n= -\frac{1}{2} \frac{\partial \mathcal{H}_{e,dyn}}{\partial \tilde{q}_{\eta}{}^{\alpha\xi\mu}} + \frac{1}{2} \left(\frac{\partial \gamma^{\eta}{}_{\alpha\mu}}{\partial y^{\xi}} + \frac{\partial \gamma^{\eta}{}_{\alpha\xi}}{\partial y^{\mu}} + \gamma^k{}_{\alpha\mu} \gamma^{\eta}{}_{k\xi} - \gamma^k{}_{\alpha\xi} \gamma^{\eta}{}_{k\mu} \right)
$$

Solved for He*,*dyn, one finds exactly the representation of the

Riemann curvature tensor r *η αξβ*

$$
\frac{\partial \mathcal{H}_{e, dyn}}{\partial \tilde{q}_{\eta}{}^{\alpha \xi \mu}} = \frac{\partial \gamma^{\eta}{}_{\alpha \mu}}{\partial y^{\xi}} - \frac{\partial \gamma^{\eta}{}_{\alpha \xi}}{\partial y^{\mu}} + \gamma^{k}{}_{\alpha \mu} \gamma^{\eta}{}_{k\xi} - \gamma^{k}{}_{\alpha \xi} \gamma^{\eta}{}_{k\mu} = r^{\eta}{}_{\alpha \xi \beta} (\gamma, \partial \gamma)
$$

The canonical equation for the gauge coefficients follows as

$$
\frac{\partial \gamma^{\eta}{}_{\alpha\xi}}{\partial y^{\mu}} = \frac{\partial \mathcal{H}_{e,GR}}{\partial (g_1 \tilde{q}_{\eta}{}^{\alpha\xi\mu})} \n= -\frac{1}{2} \frac{\partial \mathcal{H}_{e,dyn}}{\partial \tilde{q}_{\eta}{}^{\alpha\xi\mu}} + \frac{1}{2} \left(\frac{\partial \gamma^{\eta}{}_{\alpha\mu}}{\partial y^{\xi}} + \frac{\partial \gamma^{\eta}{}_{\alpha\xi}}{\partial y^{\mu}} + \gamma^k{}_{\alpha\mu} \gamma^{\eta}{}_{k\xi} - \gamma^k{}_{\alpha\xi} \gamma^{\eta}{}_{k\mu} \right)
$$

Solved for He*,*dyn, one finds exactly the representation of the

Riemann curvature tensor r *η αξβ*

$$
\frac{\partial \mathcal{H}_{e, dyn}}{\partial \tilde{q}_{\eta}{}^{\alpha \xi \mu}} = \frac{\partial \gamma^{\eta}{}_{\alpha \mu}}{\partial y^{\xi}} - \frac{\partial \gamma^{\eta}{}_{\alpha \xi}}{\partial y^{\mu}} + \gamma^{k}{}_{\alpha \mu} \gamma^{\eta}{}_{k\xi} - \gamma^{k}{}_{\alpha \xi} \gamma^{\eta}{}_{k\mu} = r^{\eta}{}_{\alpha \xi \beta} (\gamma, \partial \gamma)
$$

We observe:

The CT requirement for $q^\eta_{\alpha\xi\mu}$ to constitute a tensor can be satisfied. $\mathcal{H}_{\rm e, dyn}$ linear in $\tilde{q}_{\eta}^{\,\,\,\alpha\xi\mu}$ only allows for constant (or zero) curvature.

The canonical equation for the gauge coefficients follows as

$$
\frac{\partial \gamma^{\eta}{}_{\alpha\xi}}{\partial y^{\mu}} = \frac{\partial \mathcal{H}_{e,GR}}{\partial (g_1 \tilde{q}_{\eta}{}^{\alpha\xi\mu})} \n= -\frac{1}{2} \frac{\partial \mathcal{H}_{e,dyn}}{\partial \tilde{q}_{\eta}{}^{\alpha\xi\mu}} + \frac{1}{2} \left(\frac{\partial \gamma^{\eta}{}_{\alpha\mu}}{\partial y^{\xi}} + \frac{\partial \gamma^{\eta}{}_{\alpha\xi}}{\partial y^{\mu}} + \gamma^k{}_{\alpha\mu} \gamma^{\eta}{}_{k\xi} - \gamma^k{}_{\alpha\xi} \gamma^{\eta}{}_{k\mu} \right)
$$

Solved for He*,*dyn, one finds exactly the representation of the

Riemann curvature tensor r *η αξβ*

$$
\frac{\partial \mathcal{H}_{e,dyn}}{\partial \tilde{q}_{\eta}{}^{\alpha\xi\mu}} = \frac{\partial \gamma^{\eta}{}_{\alpha\mu}}{\partial y^{\xi}} - \frac{\partial \gamma^{\eta}{}_{\alpha\xi}}{\partial y^{\mu}} + \gamma^{k}{}_{\alpha\mu} \gamma^{\eta}{}_{k\xi} - \gamma^{k}{}_{\alpha\xi} \gamma^{\eta}{}_{k\mu} = r^{\eta}{}_{\alpha\xi\beta} (\gamma, \partial \gamma)
$$

- The CT requirement for $q^\eta_{\alpha\xi\mu}$ to constitute a tensor can be satisfied.
- $\mathcal{H}_{\rm e, dyn}$ linear in ${\tilde{\textit{q}}_{\eta}}^{\alpha \xi \mu}$ only allows for constant (or zero) curvature.

Options for choosing He*,*dyn

For the particular choice of a "free-field" Hamiltonian that is a quadratic function of *q*

$$
\mathcal{H}_{\mathrm{e}, \mathrm{dyn}} = \tfrac{1}{2} \tilde{\mathsf{q}}_\eta^{ \alpha \xi \beta} \mathsf{q}^\eta_{ \alpha \xi \beta},
$$

we find

$$
\boldsymbol{q}^{\eta}_{\alpha\xi\beta} = \frac{\partial \mathcal{H}_{\mathrm{e},\mathrm{dyn}}}{\partial \tilde{\boldsymbol{q}}_{\eta}^{\alpha\xi\beta}} = \boldsymbol{r}^{\eta}_{\alpha\xi\beta} \left(\gamma,\partial\gamma \right).
$$

 \rightsquigarrow With this choice of $\mathcal{H}_{\text{e,dyn}}$, the quantity q — introduced formally in the generating function — emerges as the Riemann curvature tensor.

We could as well define He*,*dyn as

$$
\mathcal{H}_{\rm e, dyn} = -\frac{1}{\ell^2} \tilde{q}_{\eta}^{\,\,\,\alpha \xi \beta} \left(\delta^{\eta}_{\xi} g_{\alpha \beta} - \delta^{\eta}_{\beta} g_{\alpha \xi} \right).
$$

The above field equation then yields

$$
r_{\eta\alpha\xi\beta}\left(\gamma,\partial\gamma\right)=-\frac{1}{\ell^2}\left(g_{\xi\eta}g_{\alpha\beta}-g_{\beta\eta}g_{\alpha\xi}\right).
$$

 The dynamical quantities *γ* then describe a 4-dimensional Anti-de Sitter space $(AdS₄)$ with radius ℓ , hence a solution of the Einstein-Hilbert action.

Options for choosing He*,*dyn

For the particular choice of a "free-field" Hamiltonian that is a quadratic function of *q*

$$
\mathcal{H}_{\mathrm{e}, \mathrm{dyn}} = \tfrac{1}{2} \tilde{\mathsf{q}}_\eta^{ \alpha \xi \beta} \mathsf{q}^\eta_{ \alpha \xi \beta},
$$

we find

$$
q^{\eta}_{\ \alpha\xi\beta}=\frac{\partial \mathcal{H}_{\mathrm{e},\mathrm{dyn}}}{\partial \tilde{q}_{\eta}^{\alpha\xi\beta}}=r^{\eta}_{\ \alpha\xi\beta}\left(\gamma,\partial\gamma\right).
$$

 \rightsquigarrow With this choice of $\mathcal{H}_{\text{e,dyn}}$, the quantity q — introduced formally in the generating function — emerges as the Riemann curvature tensor.

We could as well define He*,*dyn as

$$
\mathcal{H}_{\mathrm{e},\mathrm{dyn}}=-\frac{1}{\ell^{2}}\tilde{\mathsf{q}}_{\eta}^{\alpha\xi\beta}\left(\delta^{\eta}_{\xi}\mathsf{g}_{\alpha\beta}-\delta^{\eta}_{\beta}\mathsf{g}_{\alpha\xi}\right).
$$

The above field equation then yields

$$
r_{\eta\alpha\xi\beta}\left(\gamma,\partial\gamma\right)=-\frac{1}{\ell^2}\left(g_{\xi\eta}g_{\alpha\beta}-g_{\beta\eta}g_{\alpha\xi}\right).
$$

 \rightarrow The dynamical quantities γ then describe a 4-dimensional Anti-de Sitter space ($AdS₄$) with radius ℓ , hence a solution of the Einstein-Hilbert action.

The derivative of $\mathcal{H}_{\rm e,GR}$ with respect to $\gamma^\kappa_{\;\tau\sigma}$ follows as

$$
\frac{\partial \tilde{q}_\kappa{}^{\tau\sigma\alpha}}{\partial y^\alpha} = -\frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial \left(\mathsf{g}_1\gamma^\kappa{}_{\tau\sigma}\right)} = \gamma^\beta{}_{\kappa\alpha} \tilde{\mathsf{q}}_\beta{}^{\tau\sigma\alpha} - \gamma^\tau{}_{\alpha\beta} \tilde{\mathsf{q}}_\kappa{}^{\beta\sigma\alpha} + \frac{1}{\mathsf{g}_1} \tilde{\rho}^{\tau\sigma} \, \mathsf{a}_\kappa.
$$

This equation is actually a tensor equation

$$
g_1(\tilde{\textit{q}}_{\kappa}^{ \tau \sigma \alpha})_{;\alpha} = \tilde{\textit{p}}^{\tau \sigma} \, \textit{a}_{\kappa}
$$

 \rightarrow For a torsion-free space-time, the canonical equation states that the fields a_{κ} and their conjugates, $\tilde{p}^{\tau\sigma}$ act as the source of $\tilde{q}_{\kappa}^{\ \tau\sigma\alpha}.$

For the particular case of $\mathcal{H}_{\rm e, dyn}$ quadratic in $\bm{\mathit{q}}_{\kappa}^{\,\,\tau\sigma\alpha}$, we have

$$
q_{\kappa}^{\ \tau\sigma\alpha}=r_{\kappa}^{\ \tau\sigma\alpha}.
$$

$$
g_1r^{\tau\alpha}_{\quad;\alpha}=p^{\tau\alpha}a_\alpha.
$$

The derivative of $\mathcal{H}_{\rm e,GR}$ with respect to $\gamma^\kappa_{\;\tau\sigma}$ follows as

$$
\frac{\partial \tilde{q}_\kappa{}^{\tau\sigma\alpha}}{\partial y^\alpha} = -\frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial \left(\mathsf{g}_1\gamma^\kappa{}_{\tau\sigma}\right)} = \gamma^\beta{}_{\kappa\alpha} \tilde{\mathsf{q}}_\beta{}^{\tau\sigma\alpha} - \gamma^\tau{}_{\alpha\beta} \tilde{\mathsf{q}}_\kappa{}^{\beta\sigma\alpha} + \frac{1}{\mathsf{g}_1} \tilde{\rho}^{\tau\sigma} \, \mathsf{a}_\kappa.
$$

This equation is actually a tensor equation

$$
g_1(\tilde{q}_{\kappa}^{\ \ \tau\sigma\alpha})_{;\alpha}=\tilde{p}^{\tau\sigma}\, a_{\kappa}
$$

 \rightarrow For a torsion-free space-time, the canonical equation states that the fields a_{κ} and their conjugates, $\tilde{p}^{\tau\sigma}$ act as the source of $\tilde{q}_{\kappa}^{\ \tau\sigma\alpha}.$

For the particular case of $\mathcal{H}_{\rm e, dyn}$ quadratic in $\bm{\mathit{q}}_{\kappa}^{\,\,\tau\sigma\alpha}$, we have

$$
q_{\kappa}^{\ \tau\sigma\alpha}=r_{\kappa}^{\ \tau\sigma\alpha}.
$$

$$
g_1r^{\tau\alpha}_{\quad;\alpha}=p^{\tau\alpha}a_\alpha.
$$

The derivative of $\mathcal{H}_{\rm e,GR}$ with respect to $\gamma^\kappa_{\;\tau\sigma}$ follows as

$$
\frac{\partial \tilde{q}_\kappa{}^{\tau\sigma\alpha}}{\partial y^\alpha} = -\frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial \left(\mathsf{g}_1\gamma^\kappa{}_{\tau\sigma}\right)} = \gamma^\beta{}_{\kappa\alpha} \tilde{\mathsf{g}}_\beta{}^{\tau\sigma\alpha} - \gamma^\tau{}_{\alpha\beta} \tilde{\mathsf{g}}_\kappa{}^{\beta\sigma\alpha} + \frac{1}{\mathsf{g}_1} \tilde{\rho}^{\tau\sigma} \, \mathsf{a}_\kappa.
$$

This equation is actually a tensor equation

$$
g_1(\tilde{q}_{\kappa}^{\ \ \tau\sigma\alpha})_{;\alpha}=\tilde{p}^{\tau\sigma}\,a_{\kappa}
$$

 \rightarrow For a torsion-free space-time, the canonical equation states that the fields a_{κ} and their conjugates, $\tilde{p}^{\tau\sigma}$ act as the source of $\tilde{q}_{\kappa}^{\ \tau\sigma\alpha}$.

For the particular case of $\mathcal{H}_{\rm e, dyn}$ quadratic in $\bm{\mathit{q}}_{\kappa}^{\,\,\tau\sigma\alpha}$, we have

$$
q_{\kappa}^{\ \tau\sigma\alpha}=r_{\kappa}^{\ \tau\sigma\alpha}.
$$

$$
g_1r^{\tau\alpha}_{\quad;\alpha}=p^{\tau\alpha}a_\alpha.
$$

The derivative of $\mathcal{H}_{\rm e,GR}$ with respect to $\gamma^\kappa_{\;\tau\sigma}$ follows as

$$
\frac{\partial \tilde{q}_\kappa{}^{\tau\sigma\alpha}}{\partial y^\alpha} = -\frac{\partial \mathcal{H}_{\text{e,GR}}}{\partial \left(\mathsf{g}_1\gamma^\kappa{}_{\tau\sigma}\right)} = \gamma^\beta{}_{\kappa\alpha} \tilde{\mathsf{g}}_\beta{}^{\tau\sigma\alpha} - \gamma^\tau{}_{\alpha\beta} \tilde{\mathsf{g}}_\kappa{}^{\beta\sigma\alpha} + \frac{1}{\mathsf{g}_1} \tilde{\rho}^{\tau\sigma} \, \mathsf{a}_\kappa.
$$

This equation is actually a tensor equation

$$
g_1(\tilde{q}_{\kappa}^{\ \ \tau\sigma\alpha})_{;\alpha}=\tilde{p}^{\tau\sigma}\, a_{\kappa}
$$

 \rightarrow For a torsion-free space-time, the canonical equation states that the fields a_{κ} and their conjugates, $\tilde{p}^{\tau\sigma}$ act as the source of $\tilde{q}_{\kappa}^{\ \tau\sigma\alpha}$.

For the particular case of $\mathcal{H}_{\rm e, dyn}$ quadratic in $\bm{q}_{\kappa}^{\,\,\tau\sigma\alpha}$, we have

$$
q_{\kappa}^{\ \tau\sigma\alpha}=r_{\kappa}^{\ \tau\sigma\alpha}.
$$

$$
g_1r^{\tau\alpha}_{\quad;\alpha}=p^{\tau\alpha}a_\alpha.
$$

- The canonical transformation formalism ensures the action principle to be maintained.
- The gauge principle was applied to theories that are form-invariant under Lorentz transformations as the system's global symmetry group.
- The theories can be rendered form-invariant under the corresponding local group (i.e., local Lorentz transformations) with the affine connection coefficients $\gamma^\eta_{\alpha\xi}$ acting as the respective gauge quantities. The resulting theory then satisfies the general principle of relativity.
- Up to a "free-field" Hamiltonian He*,*dyn, the canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the connection coefficients ("displacement fields") *γ η αξ* .
- For He*,*dyn quadratic in the Riemann tensor, a "Poisson-type" equation for the Ricci tensor emerges.
- The emerging coupling constant g_1 of the theory is dimensionless.

- The canonical transformation formalism ensures the action principle to be maintained.
- The gauge principle was applied to theories that are form-invariant under Lorentz transformations as the system's global symmetry group.
- The theories can be rendered form-invariant under the corresponding local group (i.e., local Lorentz transformations) with the affine connection coefficients $\gamma^\eta_{\alpha\xi}$ acting as the respective gauge quantities. The resulting theory then satisfies the general principle of relativity.
- Up to a "free-field" Hamiltonian He*,*dyn, the canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the connection coefficients ("displacement fields") *γ η αξ* .
- For He*,*dyn quadratic in the Riemann tensor, a "Poisson-type" equation for the Ricci tensor emerges.
- The emerging coupling constant g_1 of the theory is dimensionless.

- The canonical transformation formalism ensures the action principle to be maintained.
- The gauge principle was applied to theories that are form-invariant under Lorentz transformations as the system's global symmetry group.
- The theories can be rendered form-invariant under the corresponding local group (i.e., local Lorentz transformations) with the affine connection coefficients $\gamma^\eta_{\alpha\xi}$ acting as the respective gauge quantities. The resulting theory then satisfies the general principle of relativity.
- Up to a "free-field" Hamiltonian He*,*dyn, the canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the connection coefficients ("displacement fields") *γ η αξ* .
- For He*,*dyn quadratic in the Riemann tensor, a "Poisson-type" equation for the Ricci tensor emerges.
- The emerging coupling constant g_1 of the theory is dimensionless.

- The canonical transformation formalism ensures the action principle to be maintained.
- The gauge principle was applied to theories that are form-invariant under Lorentz transformations as the system's global symmetry group.
- The theories can be rendered form-invariant under the corresponding local group (i.e., local Lorentz transformations) with the affine connection coefficients $\gamma^\eta_{\alpha\xi}$ acting as the respective gauge quantities. The resulting theory then satisfies the general principle of relativity.
- \bullet Up to a "free-field" Hamiltonian $\mathcal{H}_{e, dyn}$, the canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the connection coefficients ("displacement fields") *γ η αξ* .
- For He*,*dyn quadratic in the Riemann tensor, a "Poisson-type" equation for the Ricci tensor emerges.
- The emerging coupling constant g_1 of the theory is dimensionless.

- The canonical transformation formalism ensures the action principle to be maintained.
- The gauge principle was applied to theories that are form-invariant under Lorentz transformations as the system's global symmetry group.
- The theories can be rendered form-invariant under the corresponding local group (i.e., local Lorentz transformations) with the affine connection coefficients $\gamma^\eta_{\alpha\xi}$ acting as the respective gauge quantities. The resulting theory then satisfies the general principle of relativity.
- \bullet Up to a "free-field" Hamiltonian $\mathcal{H}_{e, dyn}$, the canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the connection coefficients ("displacement fields") *γ η αξ* .
- For He*,*dyn quadratic in the Riemann tensor, a "Poisson-type" equation for the Ricci tensor emerges.
- The emerging coupling constant g_1 of the theory is dimensionless.

- The canonical transformation formalism ensures the action principle to be maintained.
- The gauge principle was applied to theories that are form-invariant under Lorentz transformations as the system's global symmetry group.
- The theories can be rendered form-invariant under the corresponding local group (i.e., local Lorentz transformations) with the affine connection coefficients $\gamma^\eta_{\alpha\xi}$ acting as the respective gauge quantities. The resulting theory then satisfies the general principle of relativity.
- \bullet Up to a "free-field" Hamiltonian $\mathcal{H}_{e, dyn}$, the canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the connection coefficients ("displacement fields") *γ η αξ* .
- For He*,*dyn quadratic in the Riemann tensor, a "Poisson-type" equation for the Ricci tensor emerges.
- The emerging coupling constant g_1 of the theory is dimensionless.

Outlook

- The canonical formalism does not yield a unique GR theory, but restricts the freedom to merely choosing the appropriate $\mathcal{H}_{\text{e-dyn}}$.
- A Lagrangian that is quadratic in the curvature tensor was already proposed by A. Einstein in a personal letter to H. Weyl, reasoning analogies with other classical field theories.
- **•** The formalism can easily be generalized by introducing the metric $g_{\mu\nu}$ as an additional canonical variable. The theory then allows for non-zero torsion and non-metricity tensors.
- The formalism can be further generalized by introducing tetrads instead of the metric. As we can then distinguish the internal and external (space-time) degrees of freedom of spinors, this allows to describe the interaction of fermions with the space-time dynamics.

Outlook

- The canonical formalism does not yield a unique GR theory, but restricts the freedom to merely choosing the appropriate $\mathcal{H}_{\text{e-dyn}}$.
- A Lagrangian that is quadratic in the curvature tensor was already proposed by A. Einstein in a personal letter to H. Weyl, reasoning analogies with other classical field theories.
- **•** The formalism can easily be generalized by introducing the metric $g_{\mu\nu}$ as an additional canonical variable. The theory then allows for non-zero torsion and non-metricity tensors.
- The formalism can be further generalized by introducing tetrads instead of the metric. As we can then distinguish the internal and external (space-time) degrees of freedom of spinors, this allows to describe the interaction of fermions with the space-time dynamics.
Outlook

- The canonical formalism does not yield a unique GR theory, but restricts the freedom to merely choosing the appropriate $\mathcal{H}_{\text{e-dyn}}$.
- A Lagrangian that is quadratic in the curvature tensor was already proposed by A. Einstein in a personal letter to H. Weyl, reasoning analogies with other classical field theories.
- **•** The formalism can easily be generalized by introducing the metric $g_{\mu\nu}$ as an additional canonical variable. The theory then allows for non-zero torsion and non-metricity tensors.
- The formalism can be further generalized by introducing tetrads instead of the metric. As we can then distinguish the internal and external (space-time) degrees of freedom of spinors, this allows to describe the interaction of fermions with the space-time dynamics.

Outlook

- The canonical formalism does not yield a unique GR theory, but restricts the freedom to merely choosing the appropriate $\mathcal{H}_{\text{e-dyn}}$.
- A Lagrangian that is quadratic in the curvature tensor was already proposed by A. Einstein in a personal letter to H. Weyl, reasoning analogies with other classical field theories.
- **•** The formalism can easily be generalized by introducing the metric $g_{\mu\nu}$ as an additional canonical variable. The theory then allows for non-zero torsion and non-metricity tensors.
- The formalism can be further generalized by introducing tetrads instead of the metric. As we can then distinguish the internal and external (space-time) degrees of freedom of spinors, this allows to describe the interaction of fermions with the space-time dynamics.