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Abstract We present a strategy to get axially symmetric solutions in f (R) grav-
ity by starting from spherically symmetric space-times. To do so, we assume the
validity of a complex coordinate transformation, which acts on the spherically sym-
metric metric and permits one to infer the corresponding f (R) modification. The
consequences of this recipe are here described, giving particular emphasis to define
a class of compatible axially symmetric solutions, which fairly well describes the
motion in cylindrical geometries in the field of f (R), in two different classes of coor-
dinates. We demonstrate that our approach is general and may be applied for several
cases of interest. We also show that our treatment is compatible with the standard
approach of general relativity, evaluating the motion of a freely falling particle in
the context of our metric.

1 Introduction

Alternative theories of gravity pose the problem to recover or extend the well-
established results of General Relativity (GR) as the initial value problem, the stabil-
ity of solutions and, in particular, the issue of finding out new solutions [1]. As it is
well known, beside cosmological solutions, spherically and axially symmetric solu-
tions play a fundamental role in several astrophysical problems ranging from black
holes to active galactic nuclei. Alternative gravities, to be consistent with results
of GR, should comprise solutions like Schwarzschild and Kerr ones but present, in
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general, new solutions that could be physically interesting. Due to this reason, meth-
ods to find out exact and approximate solutions are particularly relevant in order to
check if observations can be framed in Extended Theories of Gravity [2].

Recently, the interest in spherically and axially symmetric solutions of f (R)-
gravity is growing up [3, 4, 5, 6].

In this paper, we want to seek for a general method to find out axially symmetric
solutions by performing a complex coordinate transformation. Newman and Janis
showed that it is possible to obtain an axially symmetric solution (like the Kerr
metric) by making an elementary complex transformation on the Schwarzschild
solution [7]. This same method has been used to obtain a new stationary and ax-
ially symmetric solution known as the Kerr-Newman metric [8]. The Kerr-Newman
space-time is associated to the exterior geometry of a rotating massive and charged
black-hole. For a review on the Newman-Janis method to obtain both the Kerr and
Kerr-Newman metrics see [9].

By means of very elegant mathematical arguments, Schiffer et al. [10] have given
a rigorous proof to show how the Kerr metric can be derived starting from a complex
transformation on the Schwarzschild solution. We will not go into the details of
this demonstration, but point out that the proof relies on two main assumptions.
The first is that the metric belongs to the same algebraic class of the Kerr-Newman
solution, namely the Kerr-Schild class [11]. The second assumption is that the metric
corresponds to an empty solution of the Einstein field equations. Gürses and Gürsey,
in 1975 [12], showed that if a metric can be written in the Kerr-Schild form, then
a complex transformation “is allowed in General Relativity.” In this paper, we will
show that such a transformation can be extended to f (R)-gravity.

The paper is structured as follows. In Sec. 2, we describe the method and we
highlight its fundamental properties. To do so, we consider the general treatment
and we specialize it to the case of pure spherically symmetric solutions. We there-
fore obtain the corresponding modifications to the standard Kerr metric in the con-
text of f (R) gravity and we describe some dynamical properties of this solution,
by means of circular orbits in the framework of the Hamiltonian formalism. We
therefore demonstrate that our strategy is general and may be extended to the case
of fourth order gravities without stability problems. In Sec. 3, we summarize our
results and we propose possible perspectives of our method.

2 From spherical symmetry to axially symmetric solutions in
f (R) gravity

In the framework of f (R) gravity, the action takes the simple form

S =
∫

d4x
√
−g
[

f (R)+X Lm

]
.

By varying it, in terms of the metric gµν , one argues the corresponding field
equations:



Rotating black hole solutions in f (R)-gravity 3

f ′(R)Rµν −
1
2

f (R)gµν − f ′(R);µν +gµν� f ′(R) = X Tµν ,

3� f ′(R)+ f ′(R)R−2 f (R) = X T , (1)

where Tµν represents the standard energy-momentum tensor for dust-like matter,

which can be expressed in the form: Tµν =
−2√
−g

δ (
√
−gLm)

δgµν
. The constant X

contains the gravitational constant G, since X =
8πG
c4 , while g is the metric deter-

minant.
Our formalism involves the use of spherically symmetric space-time as starting

point. In fact, we set up our treatment by assuming the most general spherically
symmetric space-time below:

ds2 = gtt(t,r)dt2−grr(t,r)dr2− r2dΩ , (2)

in which dΩ represents the solid angle. The basic demands consists in employing on
it a transformation that maps Eq. (2), providing that the off-diagonal terms vanish.
Hence, the spherically symmetric space-time may be obtained by assuming that Eq.
(2) satisfies particular cosmic symmetries. Here, we consider the Noether symme-
tries and so, after several calculations, we can write down the simplest spherically
symmetric space-time as:

ds2 = (α +β r)dt2− 1
2

β r
α +β r

dr2− r2dΩ , (3)

where we assumed α as a combination of auxiliary constants, e.g. Σ0 and k and
β = k1 [4].

Here, we demonstrate how it is possible to get an axially symmetric solution
adopting the Newman-Janis procedure, extending their treatment in the context of
f (R) gravities and going beyond the standard usage of using the Newman-Janis
procedure in general relativity only. To this end, as we already stressed before, we
employ the existence of Noether symmetries which make the f (R) model consistent
with the corresponding field equations. For our purposes, let us recast the spherically
symmetric metric as ds2 = e2φ(r)dt2− e2λ (r)dr2− r2dΩ , with gtt(t,r) = e2φ(r) and
grr(t,r) = e2λ (r). Hereafter, our convention is to refer to time-like components as tt
or 00, whereas space-like as rr or ii, with i running from i = 0 to i = 3.

Considering the suitable Eddington–Finkelstein coordinates, i.e. (u,r,θ ,φ), which
represent a viable choice for our coordinate representation, after simple algebra, we
definitively get ds2 = e2φ(r)du2±2eλ (r)+φ(r)dudr− r2dΩ . Thus, the matrix associ-
ated to the metric is rewritable in terms of a null tetrad as:

gµν = lµ nν + lν nµ −mµ m̄ν −mν m̄µ , (4)

where lµ , nµ , mµ and m̄µ should satisfy
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lµ lµ = mµ mµ = nµ nµ = 0 , (5)
lµ nµ = −mµ m̄µ = 1 , (6)

lµ mµ = nµ mµ = 0 , (7)

where we assumed the bars as indication of the complex conjugation.
In our case, a generic space-time event becomes

xµ → x̃µ = xµ + iyµ(xσ ) , (8)

in which we notice that yµ(xσ ) are functions of the real coordinates xσ . Analogously,
the null tetrad vectors Zµ

a = (lµ ,nµ ,mµ , m̄µ), with a = 1,2,3,4, should satisfy

Zµ
a → Z̃µ

a (x̃
σ , ¯̃xσ ) = Zρ

a
∂ x̃µ

∂xρ
. (9)

All this procedure provides a net effect which consists in generating a new metric.
The component of such a space-time are real and depend upon complex variables.
We have:

gµν → g̃µν : x̃× x̃ 7→ R , (10)

where we consider:
Z̃µ

a (x̃
σ , ¯̃xσ )|x=x̃ = Zµ

a (x
σ ) . (11)

From the transformed null tetrad vectors, a new metric is therefore obtained. So,
assuming the covariant form, we can list the corresponding metric components as:

g00 = e2φ(r̃,θ) ,

g01 = eλ (r̃,θ)+φ(r̃,θ) ,

g03 = aeφ(r̃,θ)[eλ (r̃,θ)− eφ(r̃,θ)]sin2
θ ,

g13 = −aeφ(r̃,θ)+λ (r̃,θ) sin2
θ ,

g22 = −Σ
2 ,

g33 = −[Σ 2 +a2 sin2
θeφ(r̃,θ)(2eλ (r̃,θ)− eφ(r̃,θ))]sin2

θ .

Where we assumed that all the other components, i.e. the components that we did
not report above, are zero.
This procedure is circumscribed to the use of the particular choice of coordinates.
However, one can also perform the Newman-Janis algorithm on any static spheri-
cally symmetric solutions, by means of the more practically Boyer-Lindquist coor-
dinates. So, evaluating the same steps performed above and the analogous strategy
to get the tetrad null vectors in the case of axially symmetric space-time, we simply
obtain:

ds2 =
r(α +β r)+a2β cos2 θ

Σ
dt2 +2

a(−2αr−2βΣ 2 +
√

2βΣ 3/2)sin2
θ

2Σ
dtdφ +

− βΣ 2

2αr+β (a2 + r2 +Σ 2)
dr2−Σ

2dθ
2−
[

Σ
2−

a2(αr+βΣ 2−
√

2βΣ 3/2)sin2
θ

Σ

]
sin2

θdφ
2
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As in standard general relativity, our treatment should be compatible with the motion
of a freely falling particle. Hence, we can treat a physical example which accounts
for a freely falling particle moving in our so-obtained metric. To do so, we make
extensive use of the Hamiltonian formalism, which has the advantage not to show
any sign ambiguity which may come from turning points in the orbits [13]. The
reduced Hamiltonian, linearly reported in terms of momenta, is:

H ==

 pig0i

g00 +

[(
pig0i

g00

)2

−
m2 + pi p jgi j

g00

]1/2
 , (12)

providing H =−p0 and even satisfying the following motion equations:

dxi

dt
=

∂H
∂ pi

,
d pi

dt
=−∂H

∂xi , (13)

which permit to numerically obtain the requested orbits. In particular, in the equato-
rial plane, which corresponds to the case θ = π

2 , θ̇ = 0, we conventionally employ
α = 10 and β = 5, without losing generality and we consider the dependence on φ

and on the conjugate momentum pφ , which represents an integral of motion. As a
consequence, we find out that the coupled equations for {r,θ ,φ , pr, pθ} may be nu-
merically integrated, giving compatible trajectories with respect to the ones inferred
from the standard Kerr space-time. To better clarify this statement, we explicitly
report below the geodesic equations:

dxµ

dλ
=

∂H

∂ pµ

= gµν pν = pµ , (14)

d pµ

dλ
=−∂H

∂xµ
=−1

2
∂gαβ

∂xµ
pα pβ = gγβ

Γ
α

µγ pα pβ , (15)

In Fig 1, the relative trajectories are sketched.

3 Final outlooks and perspectives

In this paper, we considered the framework of f (R) gravity to describe a technique
able to get axially symmetric solutions from spherical ones. This treatment has been
extensively described by Newman-Janis in a precise algorithm, which takes into
account complex transformations. In particular, assuming a spherically symmetric
expression for the space-time, we demonstrated that it is possible to extend the com-
plex transformations in the context of f (R) gravity. To do so, we evaluated the null
tetrad associated to this method in two different classes of coordinates and we found
out the corresponding axially symmetric metrics. In order to understand if the thus
obtained space-time works well in the field of particle motion, we considered a
freely falling particle and we showed that its motion is perfectly compatible with



6 Mariafelicia De Laurentis and Ruben Farinelli

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

Y

X

GR
f(R)

Fig. 1 Example of massive particle equatorial trajectories in a Kerr and axially-simmetric f (R)
metric, obtained from the solution of the Hamilton-Jacboy equations (13). In both cases the BH
spin is a = 0.5, and for f (R) we employed α = 10 and β = 5 for representative purposes. The test
mass at the beginning has a pure tangential velocity component dφ/dt = 0.03 and is placed at 9Rg

the expected standard Kerr metric, which corresponds to the simplest axially sym-
metric solution in general relativity. Further investigations will be carried forward
in order to describe different symmetries by means of the Newman-Janis strategy.
In particular, measuring possible corrections due to f (R) around compact objects,
e.g. evaluating possible discrepancies from the standard cases of accretion disks,
one would constrain the f (R) functions at astrophysical regimes. This would open
new challenges for the problem of f (R) reconstructions.
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