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Abstract We compute the corrections to the Schwarzschild metric necessary to re-
produce the Hawking temperature derived from a Generalized Uncertainty Principle
(GUP), so that the GUP deformation parameter is directly linked to the deformation
of the metric. Using this modified Schwarzschild metric, we compute corrections
to the standard General Relativistic predictions for the perihelion precession for
planets in the solar system. This analysis allows us to set bounds for the GUP defor-
mation parameter from well-known astronomical measurements.

1 Introduction

Research on generalizations of the uncertainty principle of quantum mechanics has
nowadays a long history [1]. One of the main lines of investigation focuses on un-
derstanding how the Heisenberg Uncertainty Principle (HUP) should be modified
once gravity is taken into account. Given the pivotal rôle played by gravitation in
these arguments, it is not surprising that the most relevant modifications to the HUP
have been proposed in string theory, loop quantum gravity, deformed special rela-
tivity, and studies of black hole physics [2, 3, 4, 5, 6, 7], just to mention some of the
most notable frameworks.

Studies that aim at putting bounds on the dimensionless deforming parameter of
the GUP, heretofore denoted byβ , date back at least to Brau [8], and can be roughly
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divided into three different categories (actually, only two, as we will see). In the first
group one finds papers such as those of Brau [8], Vagenas [9], Nozari [10], which
use a specific (in general, non linear) representation of the operators in the deformed
fundamental commutator1

[
X̂, P̂

]
= i h̄(1+β P̂2/m2

p) , in order to compute correc-
tions to quantum mechanical predictions, such as energy shifts in the spectrum of
the hydrogen atom, or to the Lamb shift, the Landau levels, Scanning Tunneling Mi-
croscope, charmonium levels, etc. The bounds so obtained onβ are quite stringent,
but the drawback of this approach is a potentially strong dependence of the expected
shifts on the specific (non linear) representation chosen for the operatorsX̂ andP̂ in
the fundamental commutator.

In the second group, we can find the works of, e.g., Chang [11], Nozari and Pe-
dram [12], where a deformation of classical Newtonian mechanics is introduced by
modifying the standard Poisson brackets in a way that resembles the quantum com-
mutator,[x̂, p̂] = i h̄

(
1+β0 p̂2

) ⇒ {X,P} =
(
1+β0P2

)
, whereβ0 = β/m2

p.
In particular, Chang in Ref. [11] computes the precession of the perihelion of Mer-
cury directly from this GUP-deformed Newtonian mechanics, and interprets it as
an extra contribution to the well known precession of43”/century due to General
Relativity (GR). He then compares this global result with the observational data,
and the very accurate agreement between the GR prediction and observations leaves
Chang not much room for possible extra contributions to the precession. In fact, he
obtains the tremendously small boundβ . 10−66. A problem with this approach
is that a GUP-deformed Newtonian mechanics is simply superposed linearly to the
usual GR theory. One may argue that a modification of GR at orderβ should like-
wise be considered, but this is however omitted in Ref. [11]. In other words, it is not
clear why the two structures, GR and GUP-modified Newtonian mechanics, should
coexist independently, and why the two different precession errors add into a final
single precession angle. Most important, as a matter of fact, in the limitβ → 0,
Ref. [11] recoversonly the Newtonian mechanics but not GR, and GR corrections
must be added as an extra structure. Clearly, the physical relevance of this approach
and the bound that follows forβ , remain therefore questionable.

Finally, a third group of works on the evaluation ofβ contains, for example, pa-
pers by Ghosh [13] and Pramanik [14]. They use a covariant formalism, first defined
in Minkowski space, with the metricηµν = diag(1,−1,−1,−1), which can be eas-
ily generalized to curved space-times via the standard procedureηµν → gµν . These
papers should however be considered as belonging to the second group. In fact,
a closer look reveals that they also start from a deformation of classical Poisson
brackets, although posited in covariant form. From the deformed covariant Poisson
brackets, they obtain interesting consequences, like aβ -deformed geodesic equa-
tion, which leads to a violation of the Equivalence Principle. They do not deform
the field equations or the metric. In Ref.[15], however, we show that this violation
of the Equivalence Principle is completely due to the postulate of deformed Poisson
brackets, and has nothing to do with the covariant formalism, or with a deformation

1 We shall work withc = kB = 1, but explicitly show the Newton constantGN and Planck constant
h̄. We also recall that the Planck length is defined as`2

p = GN h̄/c3, the Planck energy asEp `p =
h̄c/2, and the Planck mass asmp = Ep/c2, so thatGN = `p/2mp andh̄ = 2`p mp.
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of the GR field equations or solutions, or of the geodesic equation. Nonetheless, the
Ghosh-Pramanik formalism remains covariant whenβ → 0 and reproduces standard
GR results in the limitβ → 0 (this differs, in general, from the results obtained by
papers in the second group).

The novelties of our approach, when compared with the previous ones, are many
and various. The main point is to start directly from a quantum mechanical effect,
the Hawking evaporation, for which the GUP is necessarily relevant, rather than pos-
tulating specific representations of canonical operators or modifications of the clas-
sical equations of motion. We connect the deformation of the Schwarzschild metric
directly to the uncertainty relation, without relying on a specific representation of
commutators. We leave the Poisson brackets and classical Newtonian mechanics
untouched, and recover GR, and standard quantum mechanics, in the limitβ → 0.
In particular, we preserve the Equivalence Principle, and the equation of motion of
a test particle is still given by the standard geodesic equation. In the present work,
this is obtained by deforming a specific solution of the standard GR field equations,
namely the Schwarzschild metric.

2 Deforming the Schwarzschild metric

In this section, we start from a known way of deriving the Hawking temperature
directly from the metric of a black hole, and then show how the GUP modifies the
Hawking temperature. These two steps will pave the road to a deformation of the
Schwarzschild metric, constructed so as to reproduce the GUP-modified Hawking
temperature. We consider here a space-time with a metric that locally has the form

ds2 = gµνdxµdxν = F(r)dt2−F(r)−1dr2− r2dΩ2, (1)

wheredΩ2 = dθ 2 + sin2 θ dφ2. The horizons (if any), are located at the positive
zeros of the functionF(r) (see, for example, Ref. [16]).

We loosely follow a standard derivation, as for example that in Ref. [17]. Suppose
r = rH is an horizon, so thatF(rH) = 0, and considerr ≥ rH. Then, a quantized scalar
field outside the horizon lives in a heat bath with temperature

T = h̄
F ′(rH)

4π
. (2)

Therefore the temperature of the black hole horizon as seen by a distant observer
is in general given by formula (2). In particular, for a Schwarzschild black hole the
functionF(r) is given by(1−2GNM/r), the horizon is atrH = 2GN M, and we get
TH = h̄/(8π GN M) , which is the well-known Hawking temperature.

We now give here a derivation of the mass-temperature relation starting di-
rectly from the uncertainty relations. The most common form of deformation of
the Heisenberg uncertainty relation (and the form of GUP that we are going to study
in this paper) is without doubt the following
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∆x∆ p ≥ h̄
2

(
1 + β

4`2
p

h̄2 ∆ p2

)
=

h̄
2

[
1+β

(
∆ p
mp

)2
]

. (3)

The dimensionless parameterβ is usually assumed to be of order one, in the most
common quantum gravity formulations. Following the arguments of Refs. [18, 19,
20, 21, 22, 23], we promptly arrive to translate relation (3) into a mass-temperature
relation for a Schwarzschild black hole

M =
h̄

8π GN T
+β

T
2π

. (4)

To zero order inβ , we recover the usual Hawking formula. Let us note that in this
work we assume that the correction induced by the GUP has a thermal character,
and therefore it can be cast in the form of a shift of the Hawking temperature. Of
course, there are also different approaches (see e.g. Ref. [24]), where the corrections
do not respect the exact thermality of the spectrum, and thus need not be reducible
to a simple shift of the temperature.

We can legitimately wonder what kind of (deformed) metric would predict a
Hawking temperature like the one inferred from the GUP relation (4), for a givenβ .
Since we are interested only in small corrections to the Hawking formula, we can
consider a deformation of the Schwarzschild metric of the kind

F(r) = 1− 2GN M
r

+ ε
G2

N M2

r2 , (5)

and we shall look for the lowest order correction inε. We see that Eq.(5) is actually
the simplest mathematical form, if one supposes that the metric can be expanded in
powers of1/r. This is nothing else than the well known Eddington-Robertson ex-
pansion of a spherically symmetric metric. Note however that, sinceRH/r ∼ 10−5 on
the surface of the Sun, the term proportional toε can still be considered small even
if ε is relatively large. The temperature predicted by this deformed Schwarzschild
metric is

T(ε) = h̄
F ′(rH)

4π
=

h̄
2π GN M

√
1− ε(

1+
√

1− ε
)2 , (6)

which must coincides with the temperatureT(β ) predicted by Eq. (4), for any given
β . This yields a relation betweenβ andε,

β (ε) =−π2 GN M2

h̄
ε2

1− ε
. (7)

For |ε| ¿ 1, to the lowest order inε, we thus getβ =−π2M2ε2/(4m2
p) , where we

notice that bothβ andε are dimensionless. It is now of great interest to observe that
Eq. (7) forces us to admit thatβ < 0, sinceε ≤ 1. Although quite unexpected, this
might be a suggestion of fundamental importance. It seems that a metric is able to
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reproduce the GUP-deformed Hawking temperatureonly if the deforming parame-
ter β is negative. We already encountered a situation like this when we studied the
uncertainty relation formulated on a crystal lattice [25]. This could be a further hint
that the physical space-time has actually a lattice or granular structure at the level of
the Planck scale.

3 Perihelion precession by deformed Schwarzschild metric

Having established a connection between the GUP parameterβ and the deforma-
tion ε of the Schwarzschild metric, we are now in a position to compute the physical
(possible observable) consequences of such a deformed metric. Here, we consider
a particle bound in a orbit around a massive body, typically a planet around the
Sun. Again, we roughly follow the treatment of Ref. [26]. The relevant geometrical
parameters for an elliptic orbit in a polar coordinates system, with the radial coordi-
nater which at aphelia and perihelia takes, respectively, the maximum valuer+ and
minimum valuer−, are the eccentricitye, the semi-major axisa, and thesemilatus
rectumL. These geometrical parameters are related byr± = (1±e)a, L = (1−e2)a,
2
L = 1

r+
+ 1

r− . The angle swept out by the position vector when it increases fromr−
to r is then given by the integral

φ(r)−φ(r−) =
∫ r

r−


 r2−

(
1

F(r) − 1
F(r−)

)
− r2

+

(
1

F(r) − 1
F(r+)

)

r2−r2
+

(
1

F(r+) − 1
F(r−)

) − 1
r2



−1/2

dr

r2
√

F(r)
. (8)

The total change inφ at every lap is just twice the change asr increases fromr−
to r+. This would equal2π if the orbit were a closed ellipse, so the total orbital
precession in each revolution is given by∆φ = 2|φ(r+)−φ(r−)|−2π . We expand
the integrand before integrating, and the small parameter is given byRH/r−, or
betterRH/L. Finally the total precession after a single lap, to first order inRH/L, is
given by

∆φ ' 6π GN M
L

(
1− ε

6

)
, (9)

which, of course, reproduces the usual GR prediction in the limitε → 0. This rela-
tion should now be compared with known observational data.

The perihelion precession for Mercury is by far the best known and measured GR
precession in the Solar system. Referring to Ref. [27] for the latest most accurate
and comprehensive data, we can report the relation

〈ω̇〉=
6π GN M

L

[
1
3
(2+2γ− β̄ )+3 ·10−4 J2

10−7 )
]
, (10)
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where 〈ω̇〉 is the measured perihelion shift,J2 a dimensionless measure of the
quadrupole moment of the Sun, andγ and β̄ are the usual Eddington-Robertson
expansion parameters. The latest data from helioseismology giveJ2 = (2.2±0.1) ·
10−7. The measured perihelion shift of Mercury is known to about0.1%from radar
observations of Mercury between 1966 and 1990 [28]. The solar oblateness effect
due to the quadrupole moment is then smaller than the observational error, so it
can be neglected. Substituting standard orbital elements and physical constants for
Mercury and the Sun, we obtain

〈ω̇〉=
(

1+
2γ− β̄ −1

3

)
42.98”/century, (11)

where we can place a bound of|2γ − β̄ −1| . 3 ·10−3. Comparing with∆φ from
Eq. (9), we get|ε|. 6·10−3 , which, replaced in Eq. (7), yields the lower bound

|β |= M2

4m2
p

π2 ε2

1− ε
. 3·1072 . (12)

We can also consider the most recent data from the Messenger spacecraft [29],
which orbited Mercury in 2011-2013, and improved very much the knowledge of
its orbit. Then we can push this bound even lower, to|2γ − β̄ −1| . 7.8 ·10−5, al-
though the knowledge ofJ2 would have to improve simultaneously. If just the error
in |2γ − β̄ − 1| were taken into account, this would imply|ε| = 2

∣∣2γ− β̄ −1
∣∣ .

1.56·10−4 and therefore

|β |. 2·1069 . (13)

But of course this limit should not be considered completely reliable in this contest,
since the less accurate bound onJ2 cannot be brutally neglected, at least in principle.
Once again the perihelion shift appears to be one of the most precise tests of GR, a
true GR effect not present at all in Newtonian gravity (as it is well known).

4 Conclusions

We have shown that a suitable deformation of the Schwarz-schild metric can re-
produce the Hawking temperature for a black hole, when this is computed from a
Generalized Uncertainty Principle. We have found in this way an analytic relation
between the deformation parameter of the metricε and the usual GUP deforma-
tion parameterβ . In particular, whenβ → 0, we correctly recover GR, and standard
quantum mechanics. Neither the geodesic equation, nor the equivalence principle
are violated, for any value ofβ or ε. Well-known astronomical measurements, in
the Solar system as well as in binary pulsar systems, allowed us to put constraints
on the parameterβ . This direction seems to point towards promising research: at
present we just deformed the Schwarzschild solution, but a future possibility is to
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deform the full field equations of GR, in order to get, among other things, a more
stringent bound on the GUP parameterβ . We would like to conclude by empha-
sizing once again that, although in the existing literature one can find bounds onβ
much tighter than those obtained in this paper, they seem to depend, at least par-
tially, either on a specific (non linear) representation of the deformed commutator,
or on the hypothesis of a deformation of Poisson brackets, which implies a violation
of the equivalence principle. The line of reasoning presented in this paper avoids
these possible difficulties.
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