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Abstract A complex scalar field on a charged black hole in a cavity iswkm¢o
experience a superradiant instability. We investigatesibpdes final states of this in-
stability. We find hairy black hole solutions of a fully coepl system of Einstein
gravity and a charged scalar field. The black holes are sodeaiby a reflecting
mirror. We also investigate the stability of these blackelsol

1 Introduction

In black hole physics, there is a mechanism where rotati@@ttromagnetic) en-
ergy can be extracted from a rotating (charged) black hdies i called superradi-
ant scattering. More specifically, the amplitude of a scidd around a black hole
will be amplified if the frequency of the field satisfies [1F < mQy + qdy, where
m, g, Qy and®y are the azimuthal quantum number, scalar field charge, angeH
locity and electric potential at the outer horizon respetyi By settingQp = 0, the
charged version of the superradiant condition is obtained.

One can create an instability of the spacetime backgrouadi\superradiant
scattering process, if there is some mechanism to confinbdbenic field within
the vicinity of the black hole. Then wave modes will be repééat scattered off
the black hole and their amplitude will be intensified. Thekseeaction of the field
modes on the background will eventually become significanthe charged case,
the trapping mechanism can be induced by either (i) a refigctiirror [2] or (ii)
anti-de Sitter boundary condition [4]. By having eitherloése with a charged black
hole, the superradiant instability can be triggered.
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An interesting question that one might ask is, what is the-gwidt of this
charged-scalar superradiant instability? To tackle tiheblem, a fully non-linear
analysis is required. Hence in this talk, we investigatesjtids end-points of the su-
perradiant instability for charged black holes with a refteg mirror. More specif-
ically, a coupled system of gravity and a massless complalasdield with a
mirror-like boundary condition is studied. Numerical Hawole solutions with a
non-trivial scalar field are obtained. By considering linged perturbations of these
black holes, a numerical analysis of the black hole’s stghél undertaken. Here we
present a selection of plots to illustrate our numericalitesMore details of this
work can be found in Ref. [3].

2 Linear Perturbationsin Electrovacuum

In this section, a massless complex scalar figloh the Reissner-Nordstrom (RN)
background in a cavity is considered. In the test-field ljthie dynamics of a scalar
field on RN spacetime is described by the Klein-Gordon (KG)atipn. By substi-
tuting the ansatz ~ e '9'R(r), whereo andR(r) are respectively the frequency
and the radial part of the scalar field, into KG equation, wiaioba second order
differential equation in terms of the radial part. To solvistequation, we apply the
following boundary conditions: (i) an ingoing wave near bwgizonr — ry, and (ii)

at the mirror the scalar field vanishes,R@n,) = 0, whererp, is the location of the
mirror. Then a numerical technique called the shooting oetth implemented. We
scan for corresponding frequenciesuch that the perturbations satisfy the bound-
ary conditions.

With the black hole mass fixed to B¢ = 1, the example plot below (Fig. 1)
illustrates the frequency as a function of the location ofrarmi It is clear from
Fig. 1(a) and 1(b) that this system experiences a supemadiability as there are
regions where Irfo) > 0, indicating an unstable mode. One can learn the following
from these plots: when the location of mirngy is small (close to black hole), the
field mode decays exponentially in time; instability ocontenry, reaches a certain
value.

We find that a massless charged scalar field on the RN backdjioum cavity
experiences a superradiant instability. These resultmagreement with with pre-
vious work done by Herdeiro et al. [2], where they studied asive complex scalar
field on a charged black hole with a mirror. To fully understarhat could happen at
the end-point of this instability, a non-linear system ad\gty and a charged scalar
field must be investigated. In the next section, a fully cedpEinstein-charged
scalar system will be considered.
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Fig. 1 The imaginary part obr is plotted as a function of the location of the mirmy, (a) for
fixed scalar chargg = 0.5 and different values of the black hole cha@g(b) for fixedQ = 0.9
and different values af. Taken from [3]

3 Static Black Holes

The self-gravitating system of a charged scalar field is rilesd by the following

action
R 1

1 * K
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In Eq. (1) Faraday tensor is defined By, = [aA, — (pAa, WhereAy is the elec-
tromagnetic potentialDa = Ua —i0Aq, g is the scalar field charge ankia, =

% (Xab+ Xpa). Varying Eq. (1), we obtain three equations of motion

Gap = 871G (T5+T3)) )

i
aF® = 2 (9'D°p— 9(0%)") (3)
DaD%p = 0. @)

We consider a static spherically symmetry black hole sjmeetith line element
ds? = —f(r)h(r)dt?+ f(r)~*dr?+r? (d6%+sir? 6 d¢?). (5)

In addition, the electromagnetic vector potentighis= [Ao(r),0,0,0] and the scalar
field depends ononly ¢ = ¢(r). By inserting these ansatzes into Egs. (2-4), we ob-
tain three coupled ordinary differential equations. By @sing appropriate bound-
ary conditions at the event horizon and at the mirror, thes@led equations can be
solved numerically. We also require that the scalar fieldtasish at the location

of the mirror.

To obtain static solutions, three parameters must be spexrifi, the value of
the scalar field on the horizok, = Ay(rn), the electric field on the horizon; and
g. In Fig. 2, we show some example solutions where the black faalius is fixed
at r, = 1. The nontrivial structure of the scalar field can be seeraBse these
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scalar fields oscillate around zero therefore, one can putitror at any zero of,
however, in this work, we only consider the case where theamis located at the
first zero, since these solutions are expected to be stable.

()
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Fig. 2 The scalar fieldp(r) is plotted as a function of radius (a) for fixedd = 0.3, E, = 0.6 and
different values ofj, (b) for fixedq = 0.1 and different values d&,. Taken from [3]

By varying the three parametegs, E, and g, we obtain different hairy black
hole solutions. In Fig. 2(a), three distinct black hole $olus with three different
scalar charges are displayed. Note that these solutiosseg®three different mirror
radii. However, it is possible that different static sabuts can share the same mirror
location as illustrated in Fig. 2(b).

4 Stability of the Hairy Black Holes

In the previous section, we have shown that Einstein-cliesgelar field theory in
a cavity allows the existence of hairy black holes. Our nexiartant question is,
are these solutions stable or unstable? If they are showe sidble, they could
represent a possible end-point of the superradiant ingyeflor a massless charged
scalar perturbation on the RN background with a mirror.

We consider linear spherically symmetric perturbatiorfeere the four field vari-
ables(f,h,Aq, @) are rewritten as followsf = f(r)+ &f(t,r) and similarly for the
other three quantities. In this notatiohjs the equilibrium quantity andf is the
perturbed part. By linearising the field equations, we arav three coupled per-
turbation equations in terms 8y and the real and imaginary parts@p. These
perturbation equations are very complicated and lengititiyciétails of these equa-
tions can be found in [3]. The three perturbation equati@msist of two dynamical
equations describing the real and imaginary parts of thiastield respectively, the
other one is a constraint equation. By substituting the tansa ~ e*i"tq?)(r) (and
similarly for the other perturbations) into the equations, can integrate the per-
turbation equations numerically. The perturbation modesequired to satisfy the
boundary conditions thaﬁz(r) and other perturbation modes have an ingoing wave-
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like condition near the horizon, and at the mirror the sciddd perturbations must

vanish(¢o(rm) = 0).
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Fig. 3 The real (a) and imaginary parts (b) of the perturbationdfesgyo are plotted against the
location of the mirrorry, with the scalar charge fixed to loe= 0.2, ¢, varying from 01 to 13 and
different values of,. We find that Info’) < 0. Taken from [3].
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Fig. 4 The real (a) and imaginary parts (b) of the perturbationdfesqy o are plotted against the
scalar charge with a selection of various values gf andEy. Taken from [3].

The numerical scheme is as follows. Firstly, static backgtbparameters are
specifiedg, @, andEy, then the equilibrium field equations are integrated. Frioen t
solution, we locate the first zero of the equilibrium scalaldfj setting this to be
the location of the mirrory,. Then the coupled perturbation equations are solved by
scanning for frequencies such that the perturbations satisfy the required boundary
conditions.

In Fig. 3, the real and imaginary parts afare plotted as functions of the mir-
ror radiusry, for scalar field chargg = 0.2. In each plot, the parameter describing
static solution varies betweem = 0.1 — 1.3. Thus each point in this plot refers to
the perturbation frequency for one distinct hairy blackeh®ith the mirror at the
first zero of the static scalar fielg, we find one value o for which the perturba-
tions satisfy the boundary conditions. Fig. 3(b) shows thatperturbation modes
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decay exponentially in time since we find that(lor) < 0. In addition, the real and
imaginary parts of the perturbation frequercgre plotted as functions of the scalar
chargeg are displayed in Fig. 4. Here in this example, for each cuaselection of
values of static black hole parametgrsandEy, are fixed. Fig. 4(b) illustrates that
the perturbation modes are exponentially decaying in tWve refer the reader to
[3] where we find Injo) < 0 for all black hole solutions investigated.

5 Summary

We have studied a coupled system involving Einstein graritya complex charged
scalar field in the presence of a mirror-like boundary caaditNumerical hairy
black hole solutions were obtained by the shooting methgdoting a mirror at
the first node of the equilibrium scalar field, we showed tH#aek hole solutions
are stable under spherically symmetric linear perturbatidherefore, we conclude
that these black holes could represent an end-point of fhersadiant instability of
Reissner-Nordstorm black holes to charged scalar fieldigsations.

Acknowledgements The work of SRD and EW is supported by the Lancaster-Manehest
Sheffield Consortium for Fundamental Physics under STF@tgsd/L000520/1. The work of

SRD is also supported by EPSRC grant EP/M025802/1. The widBlPas supported by the 90th
Anniversary of Chulalongkorn University Fund (Ratchadapksomphot Endowment Fund).

References

1. J. D. Bekenstein, Extraction of energy and charge fronaekbhole Phys.Rev. D7 949 (1973).

2. J. C. Degollado, C. A. R. Herdeiro and H. F. RUnarssonjdRgiowth of superradiant instabil-
ities for charged black holes in a caviBhys.Rev. D88 063003 (2013).

3. S.Dolan, S. Ponglertsakul and E. Winstanley, Stabifityack holes in Einstein-charged scalar
field theory in a cavity, arXiv:1507.02156 [gr-qc].

4. N. Uchikata and S. Yoshida, Quasinormal modes of a masshesged scalar field on a small
Reissner-Nordstrom-anti-de Sitter black hd?ays.Rev. D83 064020 (2011).



