What if nature is bandlimited by a Planck-scale cutoff?

Achim Kempf

Departments of Applied Mathematics and Physics and Institute for Quantum Computing University of Waterloo Perimeter Institute for Theoretical Physics

Karl Schwarzschild Meeting, Frankfurt, 20-24 July 2015

Some philosophy

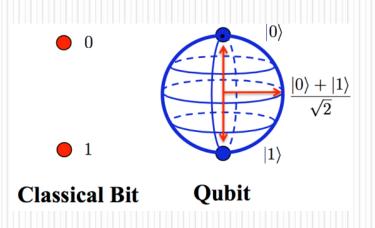
• Concepts can lose operational meaning:

e.g., temperature, pressure, force, ...

• In quantum gravity: space, time, matter, etc ?

• Most robust: (quantum) information ?

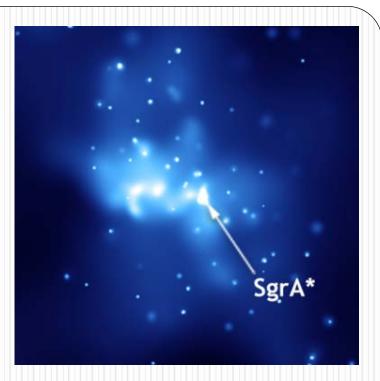
Is information a stronger concept?



Even when the meaning of the units of meters, seconds and kilograms fail, the meaning of bits and qubits may persist.

Information-theoretic foundation for physics ?

Concrete example:

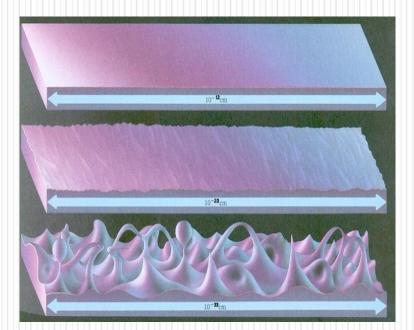


- BH entropy may be entanglement entropy. (they scale the same way)
- But for that there must be a natural UV cutoff.
- How does spacetime look at the Planck scale ?

Concretely:

When we zoom in,

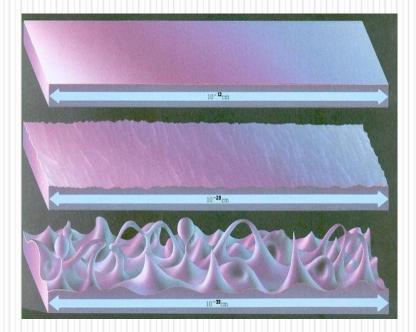
does space look like this ?



Concretely:

When we zoom in,

does space look like this ?

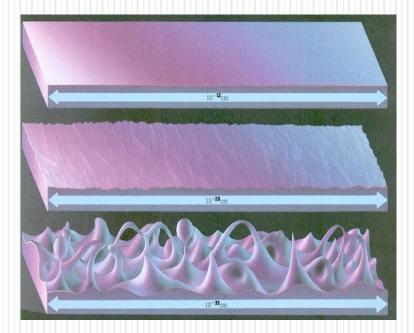


And does time look like that ?

Concretely:

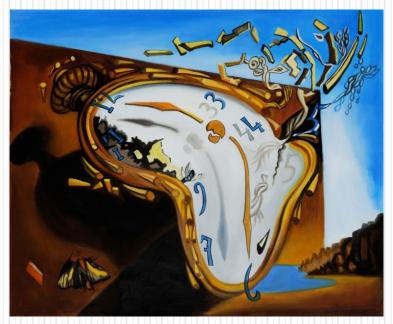
When we zoom in,

does space look like this ?



And does time look like that ?

Check operational meaning!



What happens, operationally, as one approaches the Planck Scale?

Resolve a distance more and more precisely.

=> increasing momentum uncertainty,

=> increasing curvature uncertainty,

=> increasing distance uncertainty.

→ Cannot resolve distances below $10^{(-35)}$ m.

What is the structure of spacetime ?

(and does information theory come up naturally?)

General relativity:

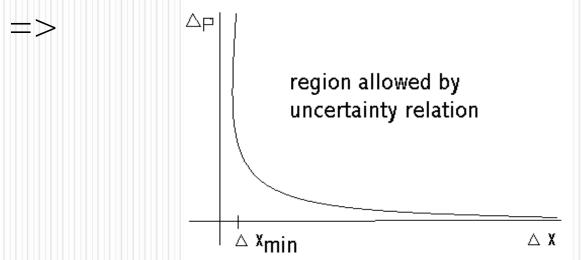
- Fields live on a differentiable spacetime manifold.

Quantum field theory:

- QFT generally only well defined if spacetime is discrete.

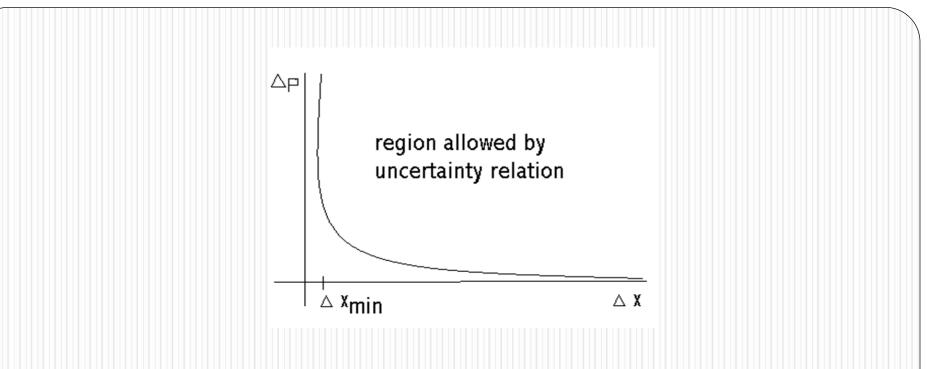
Possible resolution

Studies in quantum gravity and string theory



Canonical commutation relations and Hilbert space representation:

- A. Kempf, J. Math. Phys. **35**, 4483 (1994), hep-th/9311147
- A. Kempf, G. Mangano, and R.B. Mann, Phys. Rev. D 52, 1108 (1995), hep-th/9412167



- ➔ If so, fields must possess a finite bandwidth !
- → Spacetime is both discrete *and* continuous,

in the same mathematical way that information is.

See:	A. Kempf, Phys. Rev. Lett. 85, 2873 (2000)
	A. Kempf, Phys. Rev. Lett. 92, 221301 (2004)
	A. Kempf, R. Martin, Phys. Rev. Lett. 100 , 021304 (2008)
	A. Kempf, Phys. Rev. Lett. 103, 231301 (2009)
	D. Aasen, T. Bhamre, A. Kempf, Phys. Rev. Lett. 110, 121301 (2013)

Information theory does come up naturally

Information can be:

- continuous (e.g., music):
- discrete (letters, digits, etc):

 \rightarrow

R72SB

Sampling theory

Unified in 1949 by Shannon, through:

Applications ubiquitous:

- communication engineering & signal processing
- scientific data taking, e.g., in astronomy.

Shannon's sampling theorem

• Assume f is "bandlimited", i.e:

$$f(x) = \int_{-\omega_{\max}}^{\omega_{\max}} \widetilde{f}(\omega) \ e^{-2\pi i \omega x} d\omega$$

• Take samples of f(x) at <u>Nyquist rate</u>:

 $x_{n+1} - x_n = (2\omega_{\max})^{-1}$

• Then, <u>exact</u> reconstruction is possible:

samples

 $f(x) = \sum_{n} f(x_{n}) \frac{\sin[2\pi (x - x_{n})\omega_{\max}]}{\pi (x - x_{n})\omega_{\max}}$

f(x)

Properties of bandlimited functions

- Differential operators are also finite difference operators.
- Differential equations are also finite difference equations.
- Integrals are also series:

$$\int_{-\infty}^{\infty} f(x)^* g(x) dx = \frac{1}{2\omega_{\max}} \sum_{n=-\infty}^{\infty} f(x_n)^* g(x_n)$$

Remark:

Useful also as a summation tool for series (traditionally used, e.g., in analytic number theory)

Covariant "bandlimitation"?

Cut off of the spectrum of

the Laplacian or d'Alembertian.

$$Z[J] = \int_{\mathbf{F}} e^{iS[\phi] + i \int J\phi \ d^{n_{X}}} D[\phi]$$

→ The space of fields, F, in the QFT path integral

is spanned by the eigenfunctions w. eigenvalues:

 $\lambda_i < \Lambda$

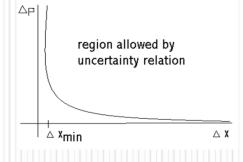
What if physical fields are "bandlimited"?

Fields possess equivalent representations

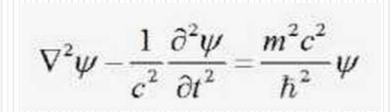
• on a differentiable spacetime manifold

(which shows preservation of external symmetries)

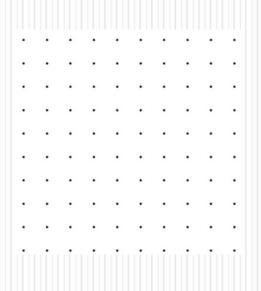
• on any lattice of sufficiently dense spacing (which shows UV finiteness of QFTs).



Entanglement entropy



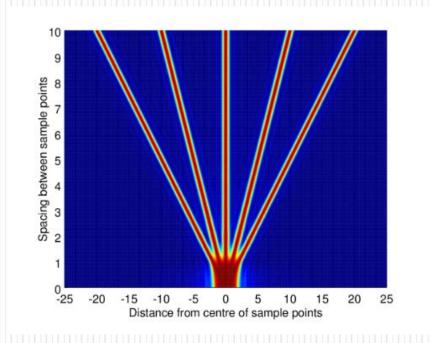
For lattice QFT:



- Coupled harmonic oscillators
- Their ground state is short-range entangled
- Entanglement entropy obeys volume and area laws.

Ent. entropy with bandwidth cutoff

With Jason Pye (UW) and William Donnelly (UCSB):



• Find smooth transition from volume to area law.

The physics of the Nyquist rate?

• Area law kicks in at Nyquist rate.

• On flat space, Nyquist rate is constant.

• How does curvature affect the Nyquist rate?

Density of degrees of freedom?

We can use [Gilkey 1975]:

Consider any compact 4-dim Riemannian manifold. Then: $N = \frac{1}{16\pi^2} \int d^4x \sqrt{|g|} \left\{ \frac{\Lambda^2}{2} + \frac{\Lambda}{6}R + O(R^2, \Lambda^{-1}) \right\}$

Can now read off:

• Cosmological constant is density of DOF: $\frac{N}{V} = \frac{\Lambda^2}{32\pi}$

• Curvature is local perturbation of density of DOF.

Re-expressing the Einstein action

=> Einstein action takes the simple form:

$$S = \frac{6\pi}{\Lambda} \frac{1}{16\pi^2} \int d^4 x \sqrt{|g|} \left\{ \frac{\Lambda^2}{2} + \frac{\Lambda}{6}R + O(R^2, \Lambda^{-1}) \right\}$$
$$= \frac{6\pi}{\Lambda} N$$
$$= \frac{6\pi}{\Lambda} Tr(1)$$

Notice: The Einstein action is the integral over the density of degrees of freedom, where the cosmological constant sets the baseline, modulated by curvature.

Compare: scalar field action

• In the eigenbasis of the Laplacian is not only the Einstein action diagonal but also the action of a scalar field:

$$S_{matter} = \int d^n x \sqrt{|g|} \frac{1}{2} \phi(x) (\Delta + m^2) \phi(x)$$

$$= \sum_{i=1}^{N} \frac{1}{2} \phi_i (\lambda_i + m^2) \phi_i$$

$$= Tr\left[\frac{1}{2}(\Delta + m^2) | \phi \right)(\phi |]$$

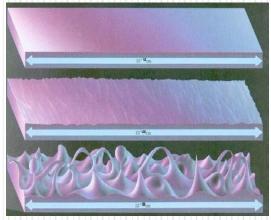
• Actions are traces, and gravity could be a leading constant.

But what is bandlimitation for spacetime itself ?

Is there a Shannon-like reconstruction of space from discrete sets of samples?

With bandwidth / min uncertainty cutoff,

what could supercede rulers and clocks ?



<u>Idea:</u> <u>Noise correlator as proxy for distance</u>

• Quantum field correlators indicate distance.

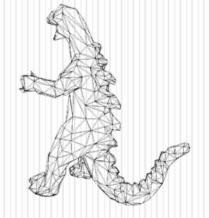
• Does the entanglement structure of the vacuum encode spacetime's curvature ?

Idea: correlators as proxy for distances

At N points X_i of a finite piece of the manifold,

sample the propagator's matrix elements:

 $< x_a \mid 1/\Delta \mid x_b >$



• Work w. Aslanbeigi and Saravani: One can reconstruct the metric.

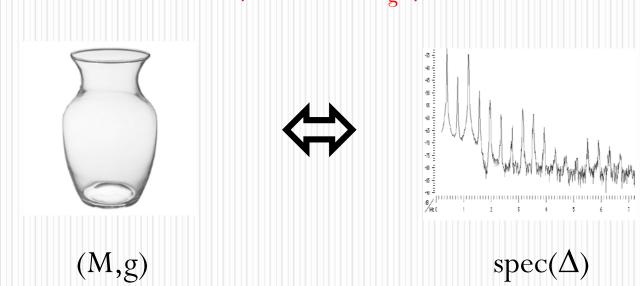
• Basis independent information \rightarrow eigenvalues of Δ .

• Does the spectrum tell the shape?

Spectral Geometry:

• "How far is shape determined by sound?"

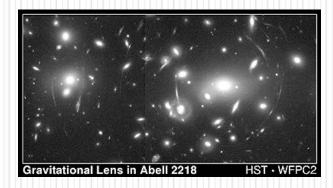
 $-\mathbf{d}^{2}\phi/\mathbf{d}t^{2} = \Delta_{g}\phi$



There are some positive results, e.g., on shapes of revolution!

Prospect:

Can one hear a spacetime's curvature in its quantum noise?

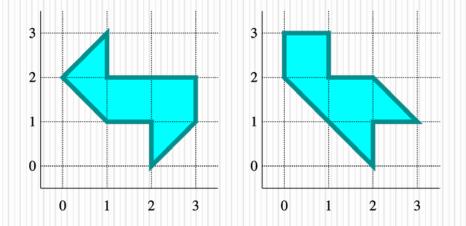


Deep link between gravity and quantum theory?

Problem !

• Spectral geometry has counter examples !

• Work by Milnor, Sunada, Gordon ...



Solution:

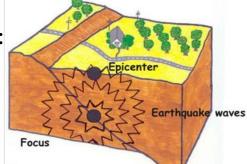
Infinitesimal spectral geometry & tensor spectra

In dimensions d>2, not every perturbation of a Riemannian manifold can be described by a scalar function f.

 $g_{\mu\nu}(x) \longrightarrow (1 + f(x)) g_{\mu\nu}(x)$

Need to use scalar, vector and tensor perturbations:

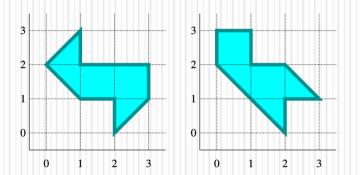
 $g_{\mu\nu}(x) \rightarrow g_{\mu\nu}(x) + \delta s_{\mu\nu}(x) + \delta v_{\mu\nu}(x) + \delta h_{\mu\nu}(x)$



(Seismic waves of different types carry independent information too)

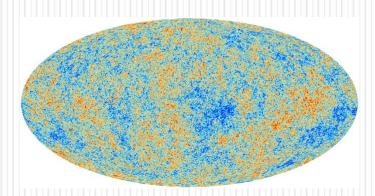
Work with Mikhail Panine (UW)

• We showed that even spectral geometry of planar domains works generically.



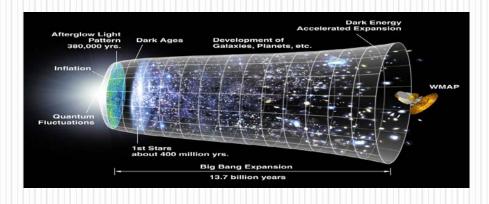
Experimental predictions ?

CMB is closest to Planck scale

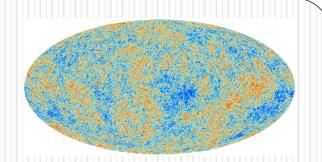


Why?

Hubble scale in inflation only about 5 orders from Planck scale.



Applied to cosmology



Multiple groups have non-covariant predictions for CMB.

• Characteristic, O(10[^]-5) or O(10[^]-10) modulations

• Characteristic deviation from scalar/tensor consistency relation in Bpolarization data.

Big challenge:

Predictions with local Lorentz covariant bandlimit cutoff!

Upcoming work with:

Aidan Chatwin-Davies (CalTech) and Robert Martin (U. Cape Town)

<u>Summary</u>

Philosophy: Only information theoretic concepts may survive at Planck scale
Found: Spacetime may be bandlimited
Thus discrete = continuous

for spacetime, as is the case for information.

- Notion of distance replaced by info-theoretic notion of correlation.
- Most also already works Lorentz-covariantly (pls ask).

Thank you