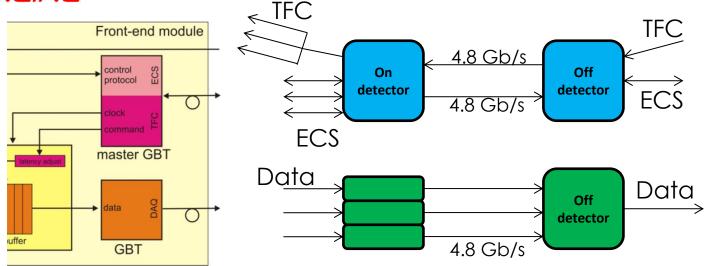

Developments for Front-End ECS

F. Alessio, C.Gaspar (on behalf of all the people contributing to this)

LHCb Upgrade Electronics meeting 09-04-2015



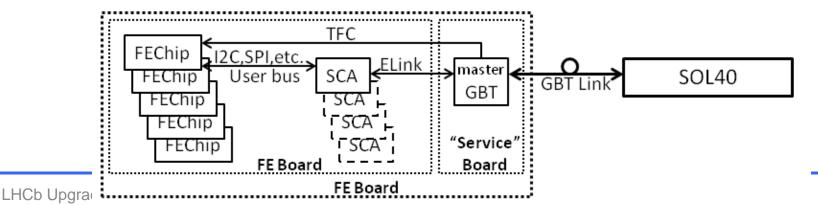
Reminder: generic architecture

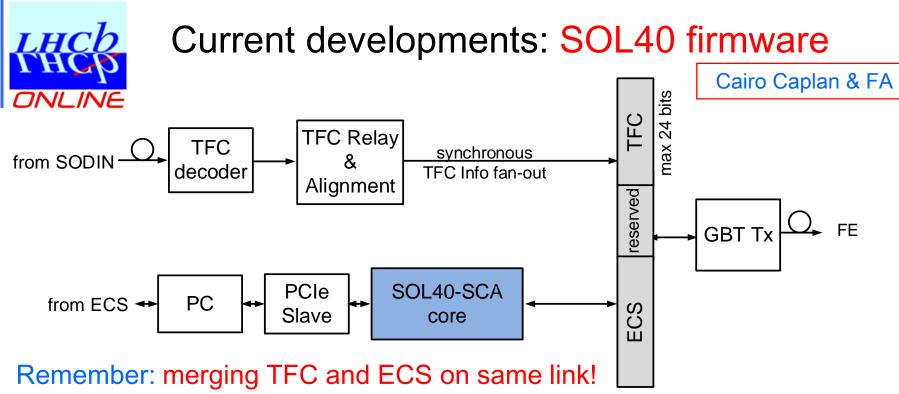
Reminder: Fast & Slow control to FE

Separate links between controls and data

- A lot of data to collect
- Controls can be fanned-out (especially fast control)

Compact links merging Timing, Fast and Clock (TFC) and Slow Control (ECS).


- Extensive use of GBT as Master GBT to drive Data GBT (especially for clock)
- Extensive use of GBT-SCA for FE configuration and monitoring



Main features

One (or more) SOL40 is used to control a slice of your FE:

- Propagate TFC information to the FE
 - Not covered here, see https://cds.cern.ch/record/1491666?ln=en
- Propagate ECS information to the FE
 - Configure/control Master GBTX
 - Configure/control Slave GBTXs
 - Configure/control GBT-SCAs
 - Configure/control FE chips
- Receive back ECS information from the FE
 - From all devices at the FE, return path
- Control all of this from WinCC, as usual
 - Within global LHCb ECS

- → SOL40 firmware will take care of doing all the complicated bit manipulations needed to control a GBT, its SCAs and your FE chipsets
 - Responsible to generate right matrix of TFC commands to FE
 - Responsible to delay TFC commands per partition/cluster of FE
 - Single firmware for everybody with all necessary features and requirements → minimize unconformities, highly programmable
 - Centrally provided

Current status: backbone ready, TFC part done, delays ready.

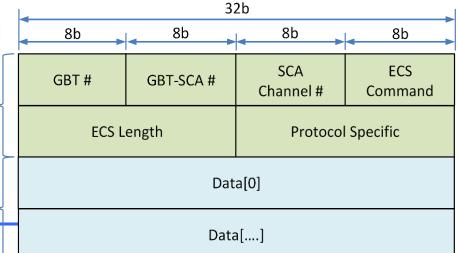
Current developments: SOL40-SCA core

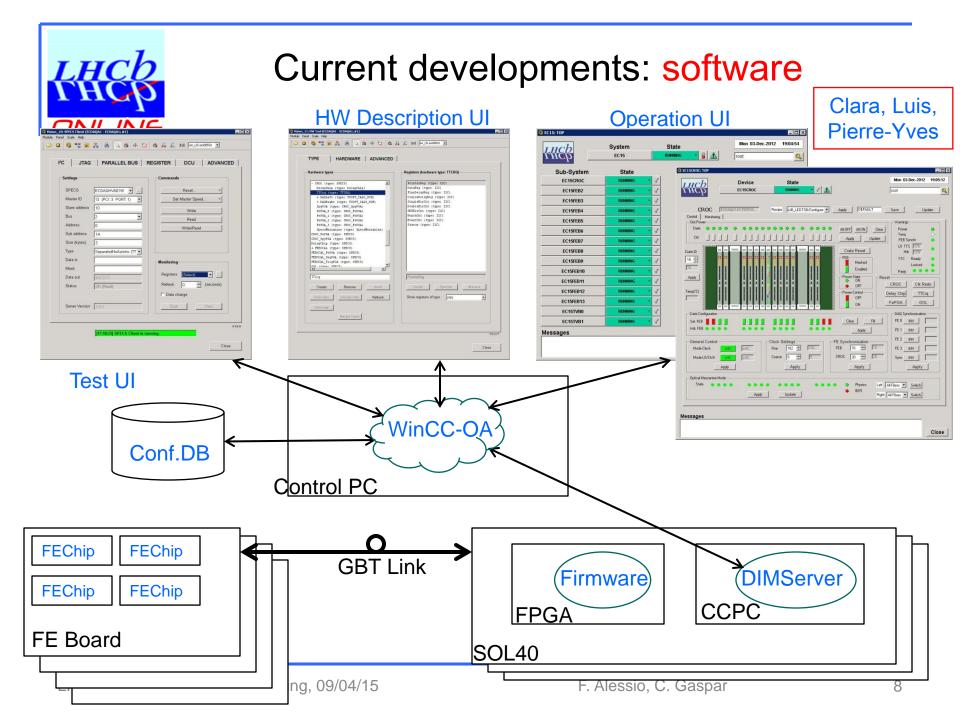
It's a firmware core inside the SOL40 firmware which is responsible to:

- control the Master GBT and Slave GBTs at the FE
 - 1 Master GBT per link
 - Slave GBTs via I2C bus from Master GBT
- control all GBT-SCAs associated to that Master GBT
 - Up to 16(+1) GBT-SCAs per GBT link
 - Serialize/Deserialize with proper encoders (HDLC)
 - Targeting 36 GBTs to start with
 - Generic, no need to create specific commands at the ECS
- control all the FE chips associated to those GBT-SCAs
 - Support for all GBT-SCAs buses in a programmable way

For more details, see Cairo's presentation at Electronics Meeting in October https://indico.cern.ch/event/291724/contribution/2/material/slides/0.pdf

Current developments: SOL40-SCA core


Current status:


- Backbone core ready → aim at fully qualifying it by summer
 - Included the part to control the Master GBTx
 - Under test in these weeks with (real) GBT and Mini-DAQ
 - First full I2C chain implemented
 - Will be tested soon in April by Cairo and GBT-SCA team with (real) GBT-SCA and Mini-DAQ
 - To do:
 - generic matrix to assign GBT-SCA to pair of bits
 - to add the other SCA protocols
 - retransmission of packets
 - checking of transmitted packets
 - Compilation done and looks quite good
 - 48% of Stratix V for 8 GBTs and 16 GBT-SCA/GBT
 - Defined a first draft of Command Field generic interface to the ECS:

LHCb Upgrade Electronics Meeting, 09/04/15data operations)

 Generic ECS command with all necessary info for the core

Data Field - (only on multi-byte

Current developments: software

- Will be centrally provided
 - Low-level libraries and command-line tools for the PC of the SOL40
 - Will allow accessing the different FE chips
 - A DIM server running on the SOL40 PC
 - Will implement higher-level commands to configure and monitor the FE
 - A WinCC-OA component(s)
 - Providing the high-level description and access of all electronics components

Conclusions

- Developments for sub-detector Front-End are ongoing together with global software for Mini-DAQ and PCIe40
 - Time wise software will move in parallel with firmware over the summer
 - As soon as we have a qualified part of the firmware we'll start working on the software
 - Most of the tools are (basically) already there
 - Needs adaptations from current LHCb ECS, but know-how is there
 - Always very quick response
 - Sub-detectors are very much encouraged to come to any of us to discuss implementations, solutions, examples etc.
 - Even better if you have something as realistic as possible
 - Even better if you can test something with us during or after the summer
 - → Note from the Wise Man: please, try to follow the specs as much as possible... unconformities are a pain to handle... ©