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Goal of this talk:
Use methods and insight from jet substructure 
to make progress on fundamental problems in 

QCD
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Goal of this talk:
Use jet substructure to understand

non-global logarithms
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Goal of this talk:
Use jet substructure to understand

non-global logarithms

What are non-global logarithms?
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Global Observables
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Examples:

High-precision calculations:

d�

d⌧

�(gg ! H +X)

N3LL + N3LO

N3LO

Becher, Schwartz 0803.0342
Abbate, Fickinger, Hoang, Mateu, Stewart 1006.3080

Anastasiou, Duhr, Dulat, Herzog, Mistlberger 1503.06056

*Fiducial cross sections are considered global
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This Conference

CMS DP-2010/014
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This Conference

CMS DP-2010/014

Measure the mass
of this jet

The jet is not directly 
sensitive to this calorimeter cell

Indirect sensitivity = Non-global effects
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Simple Picture of Non-Global Effects

In-jet region Out-of-jet region

R

e+e� ! jj
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Simple Picture of Non-Global Effects

In-jet region Out-of-jet region

R
mJ = 0

0 Emissions
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Simple Picture of Non-Global Effects

In-jet region Out-of-jet region

R
mJ = 0

1 Emission
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Simple Picture of Non-Global Effects

In-jet region Out-of-jet region

R
mJ ≠ 0

1 Emission

To predict mJ distribution, 
demand emission is in the jet 
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Simple Picture of Non-Global Effects

In-jet region Out-of-jet region

R
mJ ≠ 0

2 Emissions

For this contribution, demand 
both emissions in the jet 
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Simple Picture of Non-Global Effects

In-jet region Out-of-jet region

R
mJ ≠ 0

2 Emissions

Global “Abelian” contribution
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Simple Picture of Non-Global Effects

In-jet region Out-of-jet region

R
mJ ≠ 0

2 Emissions

Non-global “non-Abelian” contribution
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History of Non-Global Effects

@Lgab =

Z

out

d⌦j

4⇡
Wj

ab[Uabjgajgjb � gab]

Fixed-Order

Subleading Color

Subleading Fixed-Order Logarithms

Higher-Order Evolution

Identified and defined by Dasgupta and Salam
Presented Monte Carlo for NLL resummation

Dasgupta, Salam 0104277

BMS non-linear evolution equation at NLL: Banfi, Marchesini, Smye 0206076

Schwartz, Zhu 1403.4949
Khelifa-Kerfa, Delenda 1501.00475

Caron-Huot 1501.03754

Hornig, Lee, Stewart, Walsh, Zuberi 1105.4628

Weigert 0312050
Hatta, Ueda 1304.6930
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S. Marzani, BOOST 2012
Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky 1207.1640

Jet mass distribution:

Large corrections from non-global effects



Jet mass distribution:

I. Stewart, BOOST 2012
Jouttenus, Stewart, Tackmann, Waalewijn 1302.0846

TN < Tcut

solid: no non-global effects
dashed: with non-global effects

Highly restricts out-of-jet radiation
17
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Removing Non-Global Effects

See talks by:
Salam and Marzani, BOOST 2013

Marzani, BOOST 2104

highest logs transition(s) Sudakov peak NGLs NP: m2 !

plain mass αn
sL

2n — L ! 1/
√
ᾱs yes µNP ptR

trimming αn
sL

2n zcut, r2zcut L ! 1/
√
ᾱs − 2 ln r yes µNP ptRsub

pruning αn
sL

2n zcut, z2cut L ! 2.3/
√
ᾱs yes µNP ptR

MDT αn
sL

2n−1 ycut,
1
4y

2
cut, y

3
cut — yes µNP ptR

Y-pruning αn
sL

2n−1 zcut (Sudakov tail) yes µNP ptR

mMDT αn
sL

n ycut — no µ2
NP/ycut

Table 1. Table summarising the main features for the plain jet mass, the three original taggers of

our study and the two variants introduced here. In all cases, L = ln 1

ρ
= ln R2p2

t

m2 , r = Rsub/R and
the log counting applies to the region below the smallest transition point. The transition points
themselves are given as ρ values. Sudakov peak positions are quoted for dσ/dL; they are expressed
in terms of ᾱs ≡ αsCF /π for quark jets and ᾱs ≡ αsCA/π for gluon jets and neglect corrections of
O (1). “NGLs” stands for non-global logarithms. The last column indicates the mass-squared below
which the non-perturbative (NP) region starts, with µNP parametrising the scale where perturbation
theory is deemed to break down.

performance of pruning relative to mMDT is mitigated. Most interesting, perhaps, is

Y-pruning. Its background enjoys a double-logarithmic Sudakov suppression for small

m/pt, due to the factor e−D(ρ) in Eq. (5.10a). The analogous effect for the signal is, we

believe, single-logarithmic, hence the modest reduction in signal yields in Fig. 17. Overall

the background suppression dominates, leading to improved tagging significance at high

pt. This is most striking in the gluon case, because of the CA colour factor in the e−D(ρ)

Sudakov suppression. Despite this apparent advantage, one should be aware of a defect

of Y-pruning, namely that at high pt the Y/I classification can be significantly affected

by underlying event and pileup, because of the way in which they modify the original jet

mass and the resulting pruning radius. It remains of interest to develop a tagger that

exploits the same double-logarithmic background suppression while not suffering from this

drawback.21

9 Conclusions

In this paper we have developed an extensive analytical understanding of the action of

widely used boosted-object taggers and groomers on quark and gluon jets.

We initially intended to study three methods: trimming, pruning and the mass-drop

tagger (MDT). The lessons that we learnt there led us to introduce new variants, Y-pruning

and the modified mass-drop tagger (mMDT). The key features of the different taggers are

21In this context it may be beneficial to study a range of variables, such as N-subjettiness [26] and energy

correlations [32], or even combinations of observables as done in Refs [81, 82]. It is also of interest to examine

observables specifically designed to show sensitivity to colour flows, such as pull [83] and dipolarity [84],

though it is not immediately apparent that these exploit differences in the double logarithmic structure.

It would also, of course, be interesting to extend our analysis to other types of method such as template

tagging [85].

– 45 –

mMDT/soft drop

Dasgupta, Fregoso, Marzani, Salam 1307.0007

AJL, Marzani, Soyez, Thaler 1402.2657

22

Rethinking Non-Global Effects

R

groomed away
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Rethinking Non-Global Effects

In-jet region

R
mJ ≠ 0 Here Be Dragons
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Rethinking Non-Global Effects

In-jet region

R
mJ ≠ 0 Here Be Dragons
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Rethinking Non-Global Effects

In-jet region

R
mJ ≠ 0

Out-of-jet region

Maybe there was one 
emission outside the jet
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Rethinking Non-Global Effects

In-jet region

R
mJ ≠ 0

Out-of-jet region

Or, maybe there were two 
emissions outside the jet
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Rethinking Non-Global Effects

In-jet region

R
mJ ≠ 0

Out-of-jet region

Or, maybe there were 10100 
emissions outside the jet
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Rethinking Non-Global Effects

22

Rethinking Non-Global Effects

R

23

Rethinking Non-Global Effects

R

24

Rethinking Non-Global Effects

R

21

Rethinking Non-Global Effects

R

+ + … + + …

=

This is a complete basis for out-of-jet radiation, but is not an IRC safe basis

Count individual jets not individual particles!
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Rethinking Non-Global Effects

In-jet region

R
mJ ≠ 0

Out-of-jet region

Maybe there was one 
(sub)jet in the out-of-jet region

⌧2 ⌧ ⌧1
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Rethinking Non-Global Effects

In-jet region

R
mJ ≠ 0

Out-of-jet region

Maybe there were two 
(sub)jets in the out-of-jet region

⌧3 ⌧ ⌧2 ⇠ ⌧1
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Rethinking Non-Global Effects

R
mJ ≠ 0

27

Rethinking Non-Global Effects

R
mJ ≠ 0

27

Rethinking Non-Global Effects

21

Rethinking Non-Global Effects

R

+ +

=

This is a complete and IRC safe basis for out-of-jet radiation

+ …

29

Rethinking Non-Global Effects

R
mJ ≠ 0

⌧4 ⌧ ⌧3 ⇠ ⌧2 ⇠ ⌧1⌧2 ⌧ ⌧1 ⌧3 ⌧ ⌧2 ⇠ ⌧1

To isolate N (sub)jet contribution, require: ⌧N+1 ⌧ ⌧N ⇠ . . . ⇠ ⌧1
Each subjet configuration is systematically improvable to arbitrary accuracy!
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Rethinking Non-Global Effects

R
mJ ≠ 0

27

Rethinking Non-Global Effects

R
mJ ≠ 0

28

Rethinking Non-Global Effects
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Rethinking Non-Global Effects

R

+ +

=

+ …

29

Rethinking Non-Global Effects

R
mJ ≠ 0

⌧4 ⌧ ⌧3 ⇠ ⌧2 ⇠ ⌧1⌧2 ⌧ ⌧1 ⌧3 ⌧ ⌧2 ⇠ ⌧1

“Dressed Gluon Approximation”

Rigorous definition in terms of all-orders factorization theorems
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One-Dressed Gluon Approximation

product Wnn̄Gnn̄nsj must also be renormalization group invariant. That is, these functions

have the renormalization group equations:

µ
d

dµ
ln Wnn̄(zsj , ✓sj ; R) = ��D , (4.6)

µ
d

dµ
ln Gnn̄nsj (B; R) = �D ,

where �D is the anomalous dimension, which is given to one-loop in App. B.7. The resummed

dressed gluon with one-loop anomalous dimensions is

Wnn̄(zsj , ✓sj ; R; µ)Gnn̄nsj (B; R; µ) (4.7)

= Wnn̄(zsj , ✓sj ; R; µ)Gnn̄nsj (B; R; µi)

 

1 � tan2

✓sj
2

tan2

R
2

!

↵sCA
⇡ ln

µ
µi

,

where the scale at which Gnn̄nsj is evaluated has been set to µi. Taking the tree-level matrix-

elements then gives:

Wnn̄(zsj , ✓sj ; R; µ)Gnn̄nsj (B; R; µ) =
↵sCF

4⇡2zsj

2

sin2 ✓sj

 

1 � tan2

✓sj
2

tan2

R
2

!

↵sCA
⇡ ln

µ
µi

. (4.8)

Note that the dressed gluon’s matrix element vanishes as it approaches the jet boundary,

where ✓sj ! R. Therefore, emissions are suppressed near the jet boundary corresponding to

the bu↵er region identified in Monte Carlo simulations of NGLs [39].

4.2 Calculating with a Dressed Gluon

From the suggestive form of Eq. (4.2), we are able to define a generic procedure for incorpo-

rating non-global e↵ects into the resummation of an arbitrary additive observable measured

on a jet or other restricted phase space region.14 As a concrete example, we will use the

dressed gluon approximation, with one and two dressed gluons, to include non-global e↵ects

in the factorization theorem for the hemisphere mass observables in e+e� collisions. This will

be su�cient to clearly illustrate how the procedure can be extended to an arbitrary number

of dressed gluons, and for an arbitrary additive observable. We will denote the mass of the

left (right) hemisphere as mL (mR), and consider the cumulative cross section defined as

S(mL, mR) =
1

�
0

mL
Z

0

dm0
L

mR
Z

0

dm0
R

d2�

dm0
L dm0

R

, (4.9)

14Additivity of the energy correlation functions and the out-of-jet observable B was necessary for the original

form of the factorization theorem and its rewriting in Eq. (4.2). However, we strongly suspect that the

resummation of NGLs for non-additive observables, such as the fractional jet multiplicity [105] defined with

the jets-without-jets algorithm [75], can be accomplished by extending the methods discussed here. We thank

Jesse Thaler for discussions on this point.

– 21 –
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=

subjet energy fraction angle to jet boundary

out-of-jet mass

jet mass

zsj

✓sj

Vanishes as subjet
approaches boundary!

“Buffer region”

Dasgupta, Salam 0203009
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Conclusions

Dressed gluon expansion systematically organizes out-of-jet radiation
into an IRC-safe and complete basis

Can be systematically improved to arbitrary perturbative accuracy

Where else can ideas from jet substructure be applied?  Jet vetos? 
Fixed-order subtraction algorithms?  High-accuracy parton showers?

Using insights from jet substructure, gained understanding of non-global effects

Boughezal, Focke, Liu, Petriello 1504.02131
Gaunt, Stahlhofen, Tackmann, Walsh 1505.04794
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Bonus Slides
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Other Non-Global Effects

H

q

q

Non-global effects in rapidity gaps related 
to factorization-violating effects

Forshaw, Kyrieleis, Seymour 0604094

Hatta 0810.0889

Small-x BFKL evolution conformally related 
to non-global BMS evolution

p p
Hj

j

Rapidity Gaps in VBF Higgs Production

Rapidity gap veto on hadronic radiation

ŝ = x1x2s = m

2
H

x & 10�4
at the LHC

at a 100 TeV machinex & 10�6
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Consequences of Non-Global Effects

In-jet region

R
mJ ≠ 0

Out-of-jet region

Out-of-Jet Buffer Region

⌧2 ⌧ ⌧1
⌘bu↵er

Observed numerically
in Monte Carlo

Analytically verified in the
dressed gluon approximation!

Dasgupta, Salam 0203009

⌘bu↵er ⇠ log

⌧1Q2

m2
J

n

Jn̄Jn

S

jet axis

n̂sj

R

decreasing B

⌘
bu�er

B ⌧ e(↵)

2
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(b)

Figure 10: (a) A schematic depiction of the bu↵er region of Ref. [39] which arises analytically

in the dressed gluon approximation. As the out-of-jet scale is lowered (or correspondingly

the in-jet scale is raised), the bu↵er region grows. (b) The width of the bu↵er region ⌘
bu↵er

in pseudorapidity as a function of L, which exhibits linear growth. The width of the bu↵er

region is only plotted for values of L for which the one-dressed gluon approximation provides

a valid approximation to the NGL dynamics.

Consider some phase space region ⌦ in which an energy veto is applied. Ref. [39] proposed

that the mechanism for suppressing radiation emitted into ⌦ was due to a bu↵er region

around the boundary of ⌦ which itself contained little radiation. A particularly interesting

consequence of this proposal is the approximate geometry independence of the NGLs, as the

bu↵er region smoothes the detailed shape of the boundary of ⌦.

In Ref. [39] an evolution equation for the width of the bu↵er region as a function of the

in-⌦ and out-of-⌦ scales was proposed based on some simple assumptions. The solution they

found was

⌘
bu↵er

' (L � L0)

⌧

�⌘

�L

�

, (4.42)

where ⌘
bu↵er

is the width of the bu↵er region in pseudorapidity, L and L0 are logarithms of

two scales in ⌦, and
⌦ �⌘
�L

↵

acts as an average speed of the evolution of the border of the bu↵er

region in ⌘, assumed to be independent of L and postulated to be proportional to CA. A

Monte Carlo study was performed, which provided some qualitative support for the bu↵er

mechanism; nevertheless, the exact linear relation of Eq. (4.42) was not observed. However, it

was not clear if this was due to L dependence of
⌦ �⌘
�L

↵

for some unknown dynamics or simply

because the system had not reached its asymptotic behavior.

The existence and properties of such a bu↵er region can be addressed by studying the soft

jet region of phase space, as it describes the dynamics of a single gluon which itself radiates
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