Probing the Core of QCD

Jesse Thaler

Phi

Boost 2015, Chicago — August 10, 2015

Textbook QCD: Universal Collinear Limit

The Core of QCD

Basis for parton shower MC generators, PDF evolution, NLO subtractions, *k*_t clustering, jet substructure intuition...

[From Gavin's FCC talk, March 2015]

Measurable? Calculable?

→ IRC Unsafe

Splitting Function

 $| \rightarrow 2$

Collinear singularity Soft singularity

 $P(z) \simeq -$

Today:

Jet substructure to probe universal singularity structure of gauge theories (e.g. QCD)

Sudakov Safety

[Andrew Larkoski, JDT, 1307.1699; my talk at Boost 2013]

Ingredients:

Soft Drop

[Andrew Larkoski, Simone Marzani, Gregory Soyez, JDT, 1402.2657; Simone's talk at Boost 2014]

Standard Candles

[Andrew Larkoski, Simone Marzani, JDT, 1502.01719]

From Soft Drop to Splitting Functions

From Sudakov Safety to Standard Candles

From Theory to Experiment

From Soft Drop to Splitting Functions

From Sudakov Safety to Standard Candles

From Theory to Experiment

Angular-ordered tree (C/A)...

Angular-ordered tree (C/A)...

... gives splitting function?

Z IRC Unsafe

Soft Drop (β = 0, aka mMDT) $z > z_{cut}$ energy threshold

Groomed angular-ordered tree...

... gives splitting function?

[Larkoski, Marzani, Soyez, JDT, 1402.2657] [see also Butterworth, Davison, Rubin, Salam, 0802.2470; Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Soft Drop (β = 0, aka mMDT) $z > z_{cut}$ energy threshold

One prong jet...

... gives splitting function?

 $- \frac{z}{|-z} \oint \theta$ $\int \frac{\mathrm{d}\theta}{\theta} \,\mathrm{d}z \, P(z)$

[Larkoski, Marzani, Soyez, JDT, 1402.2657] [see also Butterworth, Davison, Rubin, Salam, 0802.2470; Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

How to calculate from first principles?

(see backup for how our elders addressed this in 1978)

From Soft Drop to Splitting Functions

From Sudakov Safety to Standard Candles

-- ?

Measure jet mass?

[Larkoski, JDT, 1307.1699]

[Larkoski, JDT, 1307.1699]

Calculable...

Need:
$$p(u|s) = \frac{p(u,s)}{p(s)}$$

... with Safe companion

Unsafe Want: $p(u) = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}u}$

Need:
$$p(u|s) = \frac{p(u,s)}{p(s)}$$

... with Safe companion

Sudakov Safe

$$p(u) = \int ds \, p(s) \, p(u|s)$$

$$p(u|s) = \int ds \, p(s) \, p(u|s)$$

(all orders in α_s)

Suppresses isolated singularities...

(fixed order in α_s)

...at each perturbative order

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_g} \simeq F(z_g)$$

A Standard Candle for Jets

 $\label{eq:alpha_s} \begin{array}{l} \approx \text{ independent of } \alpha_s \ (!) \\ \approx \text{ independent of jet } p_T \text{ and radius} \\ \approx \text{ same for quarks and gluons} \end{array} \end{array}$

calculable deviations from universality

(see backup for $\beta \neq 0$)

From Soft Drop to Splitting Functions

From Sudakov Safety to Standard Candles

From Theory to Experiment

Theory Calculation

[Thanks to Simone Marzani]

Parton Shower Simulation

[Thanks to Andrew Larkoski, Alexis Romero]

Experimental Measurement

This slide intentionally blank

The Future is Open

CMS 2010 Data:

 \approx 200k events with hardest jet p_T>150 GeV, very low pileup

Accelerating science through (judicious) public data releases

Open Data Analysis

p_T > 150 GeV z_{cut} = 0.1

CMS Open Data: Jet Primary Data Set with Particle Flow Candidates

Statistical uncertainties only, no unfolding, 58021 events

Using single jet triggers with $\approx 100\%$ efficiency, AK5 jet energy corrections with area subtraction, no PFC corrections

 $AOD \rightarrow MOD$ format (MIT Open Data project)

More plots in backup slides

[Thanks to Sal Rappoccio, Aashish Tripathee, Wei Xue]

Open Data Analysis

pT > 150 GeV z_{cut} = 0.1

CMS Open Data: Jet Primary Data Set with Particle Flow Candidates

Statistical uncertainties only, no unfolding, 58021 events

Using single jet triggers with $\approx 100\%$ efficiency, AK5 jet energy corrections with area subtraction, no PFC corrections

 $AOD \rightarrow MOD$ format (MIT Open Data project)

More plots in backup slides

[Thanks to Sal Rappoccio, Aashish Tripathee, Wei Xue]

Summary

From Soft Drop to Splitting Functions

Jet grooming to expose two-prong energy sharing "z" Makes concrete what we already intuit from jet substructure

From Sudakov Safety to Standard Candles

All orders in α_s yields new insights into QFT New way to measure the universal singularity structure of QCD

From Theory to Experiment

The future is now: idea + simulation + calculation + open data analysis Can open data enhance theory/experiment interface?

Backup Slides

3. Learn from Our Elders

Me: " ϕ is IRC unsafe"

My Elder: "We explicitly calculated $d\sigma/d\phi$ in 1978"

$$\frac{2\pi}{\sigma_0} \frac{d\sigma}{d\varphi} = \frac{1 + O(\alpha_s(Q^2)) + \frac{\alpha_s(Q^2)}{\pi} (\frac{16}{3} \ln \frac{3}{2} - 2) \cos 2\varphi}{Born \ \text{cross section despite ambiguity (!)}}$$

Lesson: Use IRC limit to resolve ambiguities

[Pi, Jaffe, Low, 1978; Kramer, Schierholz, Willrodt, 1978]

"Phase Diagram" for Observables

Additional zg Theory Plots

[[]Larkoski, Marzani, JDT, 1502.01719]

Additional z_{cut} Values

p⊤ > 150 GeV

 $z_{cut} = 0.2$

 $z_{cut} = 0.05$

Additional pTcut Values

 $z_{cut} = 0.1$

p_T > 300 GeV

2316 events

323 events

pT > 600 GeV

CMS Corrected Jet pT Spectrum

CMS Jet Primary Data Set Triggers

