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Motivation

● Learn how to test 3rd Generation interactions at beyond LHC energies 
● Reconstruct high-pT b, top, and τ's

● MC Truth-level study of the sensitivity to new high mass states at a 100 TeV 
proton-proton collider

● Using Z' and gkk decaying to ttbar as signal models
● Implications for detector design in S. Chekanov's talk

● VBS Resonant di-Higgs production in the 4τ final state
● Using η to HH with varying width as model Phys. Rev. D 91, 114018 (2015)

Phys. Rev. D 91, 034014 (2015)

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.114018
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.034014
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Outline
● Motivation
● Outline
● Ttbar Resonances

● Hadronic vs Leptonic Final States
● Jet Substructure variables

● MC comparisons
● Performance

● Sensitivity to new high mass states
● Impact of granularity on τ21

● VBS Resonant di-Higgs production to 4τ
● Model description
● Background vs Signal kinematic distributions and BDT Discriminant
● Sensitivity and scaling

● Summary



J. Love -- Lessons Learned from 100 TeV MC
4

Resonances Decaying to ttbar

Delphes Sim.

Phys. Rev. D 91, 034014 (2015)

B. Auerbach, S. Chekanov, JL, 
J. Proudfoot, A. V. Kotwal

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.034014
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Top Reconstruction: Hadronic vs Leptonic?

● Leptonic final states are a sure sign of 
electroweak interactions

● But at the cost of limited BR

● Leptons from top quarks with >3 TeV pT 
fail standard isolation requirement

● Electrons may not be easily 
distinguishable from the 
b-quark initiated jet

● QCD di-jet events contain 
high-pT muons too

● Must require muon pT > 2 TeV to 
improve S/B
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● Used jet substructure variables to test if substructure can provide needed 
background rejection

● Jet Mass
● Splitting scale d12    Phys. Rev. D65 (2002) 96014

● N-subjettiness variables τ32 τ21     JHEP 1103:015, 2011

●  Jet Eccentricity         Phys. Rev. D81 (2010) 114038

● REf – Energy Averaged Distance from Radius 
● And combinations thereof

 
● Anti-kT jets with radius 0.5

● Built from truth record particles minus 
neutrinos

● An infinite and perfect detector
 

Jet Substructure Variables

R
eff 

= ∑ R
i  
E / E

i

http://arxiv.org/abs/hep-ph/0201098
http://arxiv.org/abs/1011.2268
http://arxiv.org/abs/1002.3982
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Jet Substructure Variables

● ECC degree of elongation of jet shape
● Optimized cut above ECC > 0.9

● Clear peak at Jet mass distribution at W/Z and top mass
● Optimized cut above 140 GeV
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● Ref – larger for jets initiated by massive particles
● Optimized cut Ref > 0.03
● Highly correlated with Jet Mass

● Splitting scale d12 peaks at 1/2 Top Mass
● Optimized cut d12 > 50 GeV

Jet Substructure Variables

R
eff 

= ∑ R
i  
E / E

i
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Jet Substructure Variables

● N-subjettiness – measure of how well a jet is described by 
N-subjets and ratios formed from these variables

● Cut τ21 > 0.3 reject boosted W/Z and τ21 <0.8 to reject QCD dijets
● Cut τ32 < 0.75 

τ21 τ32 
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A Quick Look at Herwig++

● HERWIG++ QCD dijet events give similar 
distributions to PYTHIA

● Also include W/Z Brem. Events
● Optimized selections at same values

τ21 
τ32 d12 

ECC
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Identifying Top Jets

● Efficiency vs rejection curve as top quark 
substructure requirements are tightened

● Rejection is one over QCD dijet efficiency
● For very high efficiency ( > 60 %) mass-like 

variables give best performance
● Splitting scale, Efective Radius, Jet Mass

● Combination of n-subjettiness and 
Splitting Scale works well over large range

● ATLAS W' Top Tagger
● In full sim MC ATLAS AWTT has 50% 

Efficiency Rejection of 18x

● Efficiency reduction from requiring a 
muon of any pT in event

● Excellent rejection power at low efficiency

ATLAS-CONF-2013-084

http://arxiv.org/abs/1408.0886
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-084/
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Additional Information – b-tagging
● After jet substructure requirements S/B has improved by ~10x

● QCD backgrounds are still ~10x too large.
● Must include b-tagging

● Match a b-quark to a jet dR <0.1
● Use Snowmass-like 70% b-quark tagging efficiency to tag 1% light-quark jet fake 

efficiency, and 10% charm
● Require b-quark to have pT > 0.2 of jet
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Physics Reach

● After jet substructure and 
b-tagging requirements sensitivity
to new resonances decaying to 
ttbar are calculated

● With 10 ab-1 can discover 12 TeV signal
● With 150 ab-1 can discover 20 TeV signal

Cross Section X BR 95 %CL Limit

Before Selection All Requirements



J. Love -- Lessons Learned from 100 TeV MC
14

Implications on Detector Performance

● Precise tracking for high-efficiency b-tagging with small fake rate

● 70% efficiency & 1% fake rate for jets with  2 < pT < 10 TeV 
assumed in this study

● High-granularity calorimeter to maintain LHC-like sensitivity to jet 
substructure variables for 10 TeV top's

● Large dynamic range for jet energy resolution

● See S. Chekanov's talk for more implications!
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~ 5 deg : 
Phi ~ 5 deg, Eta ~ 0.1

x 4 better ~ 1.25 deg : 
Phi ~ 1.25 deg, Eta ~ 0.025

Example: Z'(10 TeV) → tt → 2 antiKT05 jets (pT> 3 TeV) 
 

Snowmass-like CAL geometry
'ATLAS'-like

x4 smaller CAL cells

Note: this study uses a fast simulation. 
We ignore  effects from Molière radius when considering transverse profile of showers!

From S. Chekanov
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τ
21 

Finer HCAL & ECAL cells
● Using Delphes Fast Simulation with pT

jet >3 TeV
● Assume x2 and x4 finer granularity of both ECAL and HCAL for Snowmass Detector
● x2 (x4) granularity leads to 36% (67%) improvement in resolution

RMS= 0.39
RMS= 0.28
RMS= 0.23

HepSim MC input + Delphes 3.2

From S. Chekanov
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Resonant VBS Di-Higgs Production in 4τ 
Final State

Delphes Sim.

Phys. Rev. D 91, 114018 (2015)
S. Chekanov, A. V. Kotwal, M. Low

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.114018
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Resonant VBS to di-Higgs

● New composite η decays to SM Higgs
● Only longitudinal bosons contribute
● Each Higgs decays to ττ
● Final state two jets and 4τ's

● Possible to use Large-R Higgs to ττ jets
● Anti-kT R=0.2 jets used for τ's

● Main backgrounds
● SM processes:

VV, HH, and VBS VV, HH

● Assume LHC-like τ-ID performance
● Efficiency -  60%
● QCD Fake rate ~2%

● τ-decays extremely collimated
● For 1 TeV pT ~2mm spread 1 m from 

interaction point 
● 85% One charged track plus EM showers
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Pseudo-rapidity Distributions

● Jets in VBS process dominantly 
forward

● At 100 TeV Collider <η> ~5

● Final τ's from η to HH more central 
than backgrounds

● Generator level requirement |ητ| < 3
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Two- and Four-τ Mass Distributions

● All combinations of tagged jets tested 
to give masses consistent with Higgs

● Four-τ mass shows peak for η
● Further improved with ET

miss 
included

● Missing transverse momentum 
results in Higgs peak shifted of 
resonance
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Boosted Decision Tree Performance

● SM backgrounds make hard cuts inefficient

● BDT built from event level kinematic 
distributions

● TMVA BDT trained against irreducible 
SM VBS VV→4τ

● Used to compute likelihood of the background 
only hypothesis and test signal significance
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Discovery Potential

● 5σ discovery sensitivity for 
70% width η

● Sensitivity follows power law scaling 
with Luminosity

● Where α= 0.2 (0.16) for 20% (70%) 
width η

● Sensitivity follows power law scaling 
with COM

● For √s < 100 TeV,  β = 0.5 (0.56) for 
20% (70%) width η

● For √s between 100-200 TeV
β = 0.34 (0.43) for 20%(70%) width 
η

70% Width
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Summary

● Future proton colliders have great potential for searches for new resonances decaying 
to 3rd generation final states

● For ttbar resonances the hadronic final state seems most promising
● Jet substructure mass+shower variables combined with high efficiency b-tagging give sensitivity in the 

fully hadronic final state
● Possible 5σ discovery of up to 20 TeV Z' decaying to ttbar in 100 TeV pp data

● For τ-ID LHC-like performance critical
● High-pT τ-tagging must maintain LHC-like performance
● Possible 5σ discovery of up to 6 TeV η in di-Higgs  to 4τ final state  in 100 TeV pp data

● These performance requirements have serious implications on detector design
● Extremely fine granularity calorimetry well motivated by jet substructure variable resolution
● Large pseudo-rapidity coverage needed to capture forward jets of VBS processes
● Precision tracking to maintain b-tagging performance in increasingly dense environment

● Thank you!
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Additional Material
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MC Samples

● Signal (LO QCD). PYTHIA8, MADGRAPH5
– f f  → Z0' with M=8,10,12,14,16,18,20 TeV.  Pure Z' contribution. Γ/M=3%
– q q → gKK with M=8,10,12,14,16,18,20 TeV. Pure gKK contribution. Γ/M=16%

– pp  → η jj  with η →  HH → 4τ with Γ/M= 20% and 70%
● Background processes:

● PYTHIA8  for QCD backgrounds
● NLOjet++ (NLO) to extract the k-factor (MSTW2008nlo68cl for PDF)

● HERWIG++  x k-factor as alternative (contain W/Z brem. events)
● SM tt process was generated with Madgraph (MSTW2008nlo68cl for PDF)

● NLO QCD+ HERWIG6
● PYTHIA8 for all SM boson processes (like H/Z/W+jets)

● Not too realistic, but the usage of “realistic” ALPGEN should not change conclusions

● Monte Carlo samples from the HepSim repository:
– http://atlaswww.hep.anl.gov/hepsim/

From S. Chekanov

hep-ph > arXiv:1403.1886

http://atlaswww.hep.anl.gov/hepsim/
http://arxiv.org/abs/1403.1886
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Software Monte Carlo toolkit for this study

● Monte Carlo samples from the HepSim repository:
● http://atlaswww.hep.anl.gov/hepsim/
● Select  p → ← p   then  100 TeV

Data samples & analysis program are public

hep-ph > arXiv:1403.1886

From S. Chekanov

http://atlaswww.hep.anl.gov/hepsim/
http://arxiv.org/abs/1403.1886
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MC samples for this study

● http://atlaswww.hep.anl.gov/hepsim/

MC event samples for 
Z' / g

KK
 studies:

 
● qcd_herwigpp_pt2700
● qcd_pythia8_pt2700
● ttbar_pythia8_pt2700
● pythia10tev_wjet2700
● ttbar_pt2500_mg5
● ttbar_pt2500_mg5_lo
● zprime*_pythia8
● kkgluon_ttbar*_pythia8

Includes the description of how to:
- download samples
- build an analysis program
- run fast detector simulation (Delphes) 

Pythia8 dijets. Int. luminosity ~10 ab-1

0.4 billion pp events at 100 TeV

World's largest public MC sample 
hosted by HepSim used in this study

From S. Chekanov

http://atlaswww.hep.anl.gov/hepsim/
http://atlaswww.hep.anl.gov/hepsim/
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