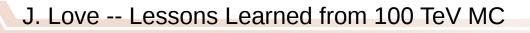


Sensitivity to New High-Mass States in the 3rd Generation at Future Proton Colliders

J. Love

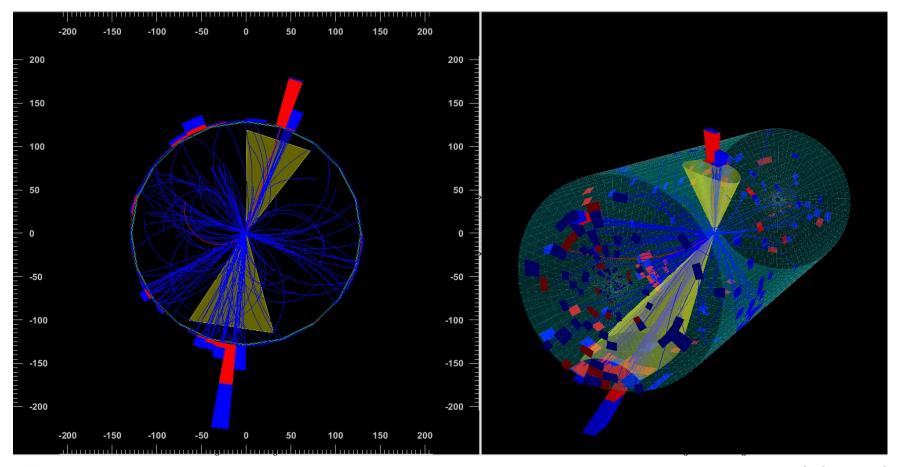
Contributions by: B. Auerbach, S. Chekanov, A. V. Kotwal, M. Low, J. Proudfoot


Motivation

- Learn how to test 3rd Generation interactions at beyond LHC energies
 - Reconstruct high- p_{τ} b, top, and τ 's
- MC Truth-level study of the sensitivity to new high mass states at a 100 TeV proton-proton collider
 - Using Z' and g_{kk} decaying to ttbar as signal models Phys. Rev. D 91, 034014 (2015)
 - Implications for detector design in S. Chekanov's talk
 - VBS Resonant di-Higgs production in the 4τ final state
 - Using η to HH with varying width as model Phys. Rev. D 91, 114018 (2015)

Outline

- Motivation
- Outline
- Ttbar Resonances
 - Hadronic vs Leptonic Final States
 - Jet Substructure variables
 - MC comparisons
 - Performance
 - Sensitivity to new high mass states
 - Impact of granularity on $\tau_{_{21}}$
- VBS Resonant di-Higgs production to 4τ
 - Model description
 - Background vs Signal kinematic distributions and BDT Discriminant
 - Sensitivity and scaling
- Summary

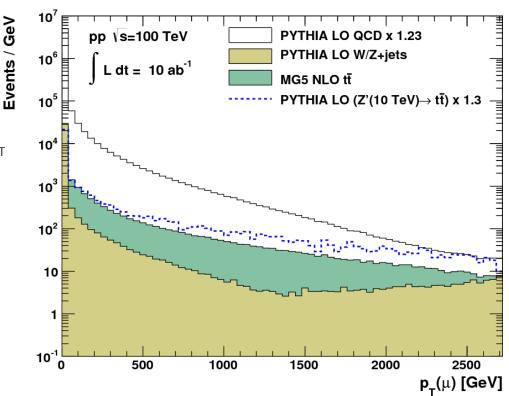


Resonances Decaying to ttbar

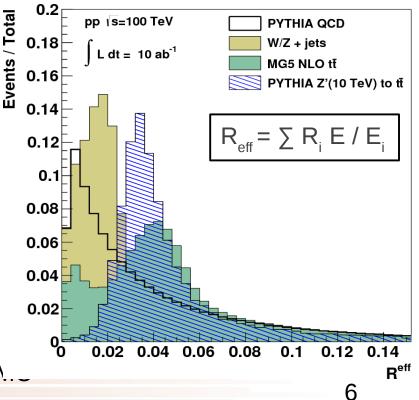
Phys. Rev. D 91, 034014 (2015)

B. Auerbach, S. Chekanov, JL,

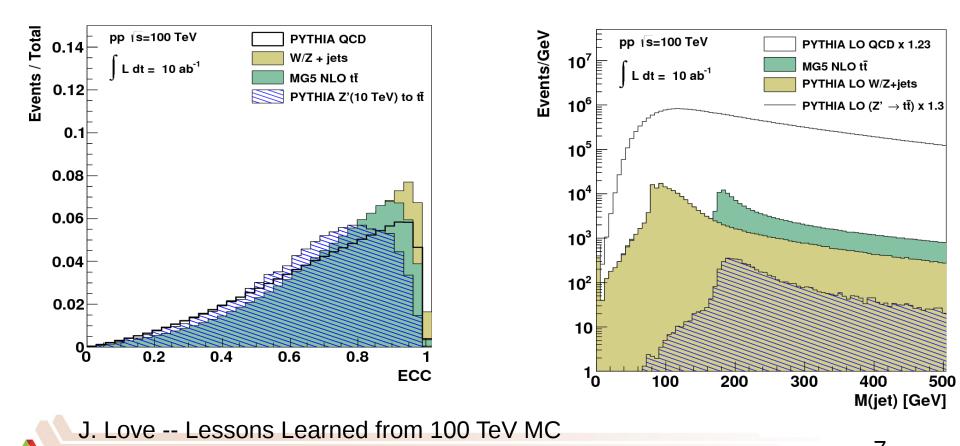
J. Proudfoot, A. V. Kotwal

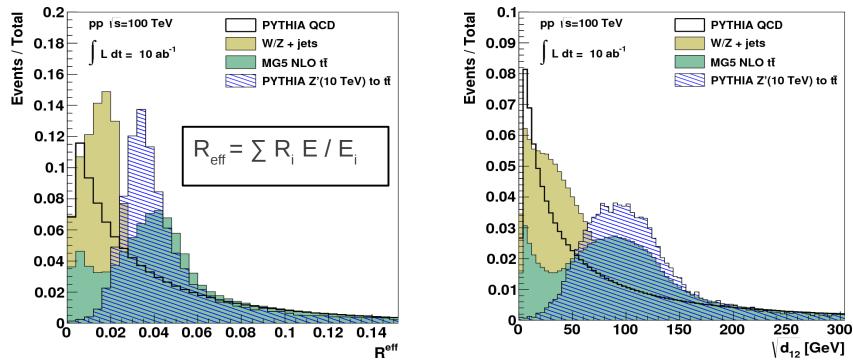

J. Love -- Lessons Learned from 100 TeV MC

Delphes Sim.

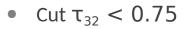

4

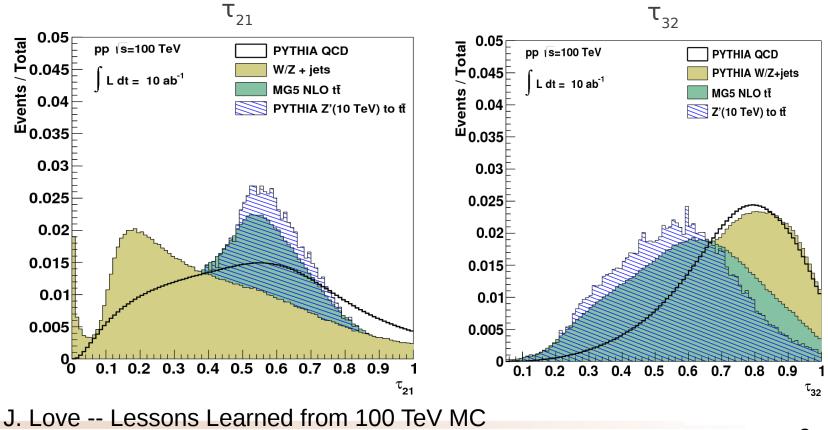
Top Reconstruction: Hadronic vs Leptonic?

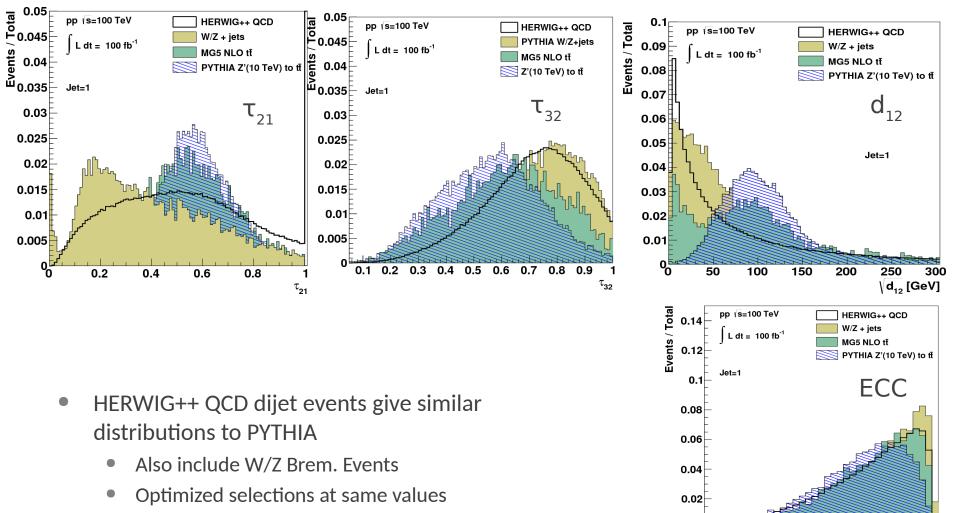

- Leptonic final states are a sure sign of electroweak interactions
 - But at the cost of limited BR
- Leptons from top quarks with >3 TeV p_T fail standard isolation requirement
 - Electrons may not be easily distinguishable from the b-quark initiated jet
- QCD di-jet events contain high-p_T muons too
 - Must require muon p_T > 2 TeV to improve S/B



- Used jet substructure variables to test if substructure can provide needed background rejection
 - Jet Mass
 - Splitting scale d₁₂ Phys. Rev. D65 (2002) 96014
 - N-subjettiness variables $\tau_{32} \ \tau_{21}$ JHEP 1103:015, 2011
 - Jet Eccentricity Phys. Rev. D81 (2010) 114038
 - R_{Eff} Energy Averaged Distance from Radius
 - And combinations thereof
- Anti-k_T jets with radius 0.5
 - Built from truth record particles minus neutrinos
 - An infinite and perfect detector


- ECC degree of elongation of jet shape
 - Optimized cut above ECC > 0.9
- Clear peak at Jet mass distribution at W/Z and top mass
 - Optimized cut above 140 GeV




- R_{eff} larger for jets initiated by massive particles
 - Optimized cut R_{eff} > 0.03
 - Highly correlated with Jet Mass
- Splitting scale d₁₂ peaks at 1/2 Top Mass
 - Optimized cut d₁₂ > 50 GeV

- N-subjettiness measure of how well a jet is described by N-subjets and ratios formed from these variables
 - Cut τ_{21} > 0.3 reject boosted W/Z and τ_{21} <0.8 to reject QCD dijets

A Quick Look at Herwig++

J. Love -- Lessons Learned from 100 TeV MC

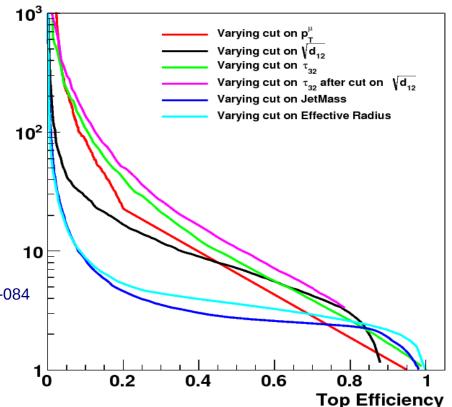
0.8

ECC

ᅆ

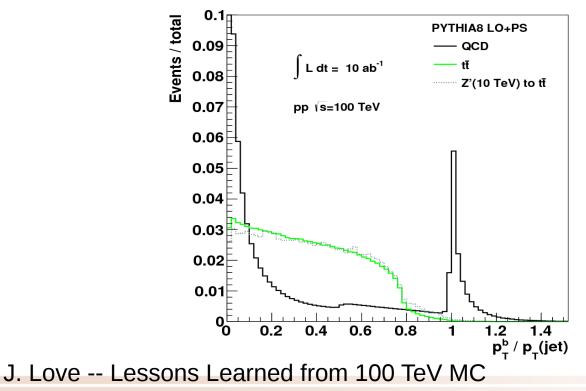
0.2

0.4


0.6

Identifying Top Jets

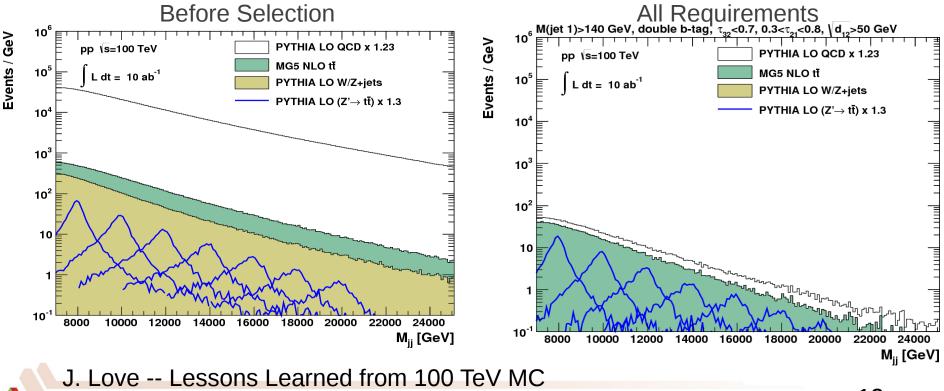
- Efficiency vs rejection curve as top quark substructure requirements are tightened
 - Rejection is one over QCD dijet efficiency
- For very high efficiency (> 60 %) mass-like variables give best performance
 - Splitting scale, Effective Radius, Jet Mass
- Combination of n-subjettiness and Splitting Scale works well over large range
 - ATLAS W' Top Tagger
 - In full sim MC ATLAS AWTT has 50%
 Efficiency Rejection of 18x ATLAS-CONF-2013-084


ejection

- Efficiency reduction from requiring a muon of any p_T in event
 - Excellent rejection power at low efficiency

Additional Information - b-tagging

- After jet substructure requirements S/B has improved by ~10x
 - QCD backgrounds are still ~10x too large.
- Must include b-tagging
 - Match a b-quark to a jet dR <0.1
 - Use Snowmass-like 70% b-quark tagging efficiency to tag 1% light-quark jet fake efficiency, and 10% charm
- Require b-quark to have $p_T > 0.2$ of jet

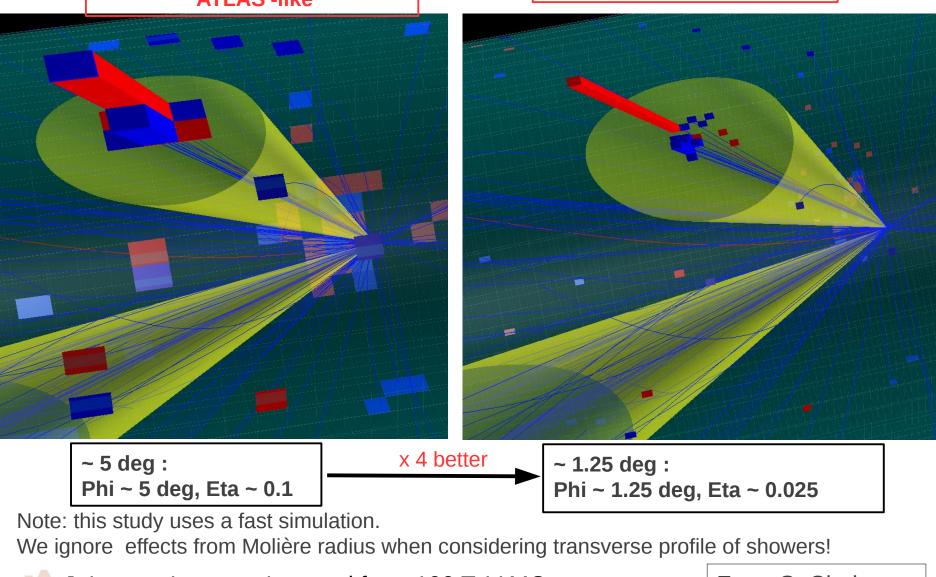


Physics Reach

- After jet substructure and b-tagging requirements sensitivity to new resonances decaying to ttbar are calculated
 - With 10 ab⁻¹ can discover 12 TeV signal
 - With 150 ab⁻¹ can discover 20 TeV signal

Cross Section X BR 95 %CL Limit

mass	$\sigma \times Br$ (fb)							
(TeV)	$Z^{0'}$ (th.)	$Z^{0\prime}$ (exp.)	g_{KK} (th.)	g _{KK} (exp.)				
8	18.46	7.00	262.3	20.2				
10	7.03	3.97						
12	3.02	2.54	45.4	7.7				
14	1.44	1.75						
16	0.73	1.27	12.2	4.7				
18	0.39	1.10						
20	0.21	0.98	4.2	4.1				

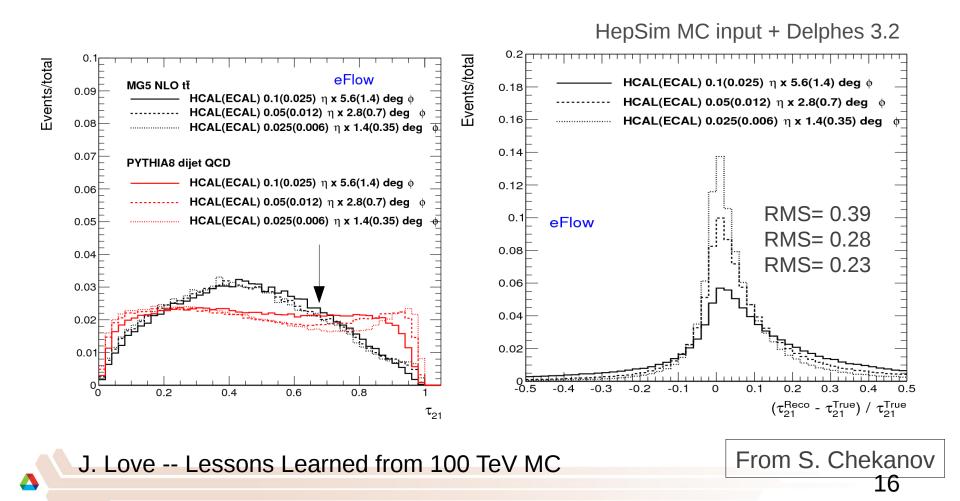


Implications on Detector Performance

- Precise tracking for high-efficiency b-tagging with small fake rate
 - 70% efficiency & 1% fake rate for jets with $2 < p_T < 10$ TeV assumed in this study
- High-granularity calorimeter to maintain LHC-like sensitivity to jet substructure variables for 10 TeV top's
- Large dynamic range for jet energy resolution
- See S. Chekanov's talk for more implications!

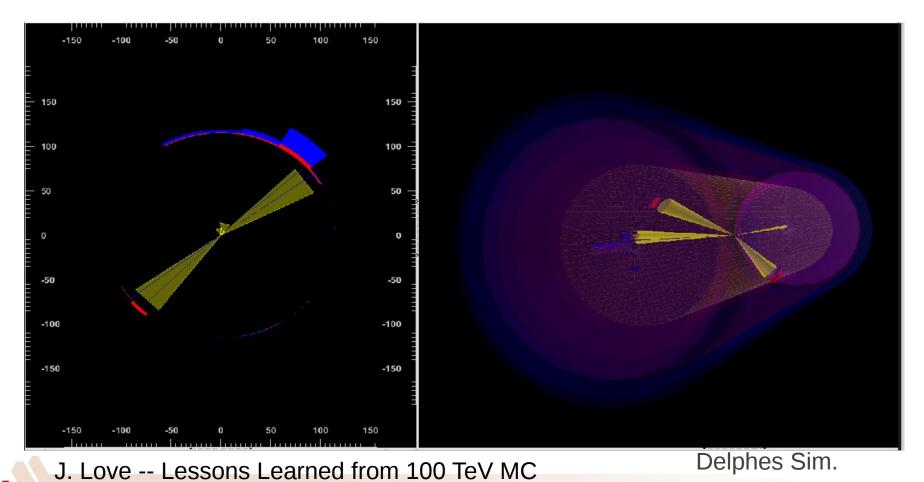
Example: Z'(10 TeV) \rightarrow tt \rightarrow 2 antiKT05 jets (pT> 3 TeV)

Snowmass-like CAL geometry 'ATLAS'-like


J. Love -- Lessons Learned from 100 TeV MC

From S. Chekanov

x4 smaller CAL cells

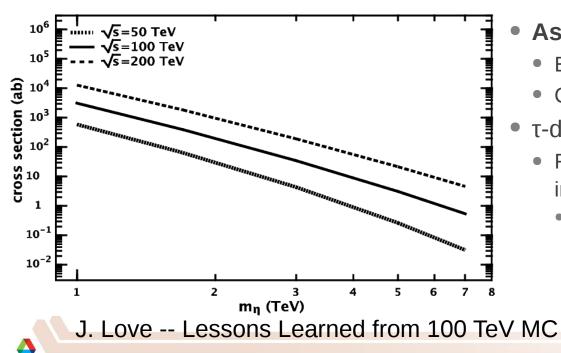

T₂₁ Finer HCAL & ECAL cells

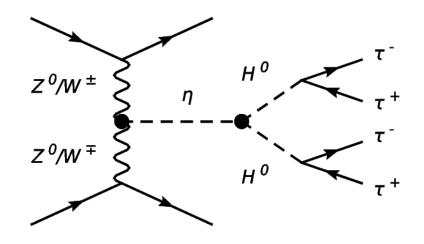
- Using Delphes Fast Simulation with p_T^{jet} >3 TeV
- Assume x2 and x4 finer granularity of both ECAL and HCAL for Snowmass Detector
- x2 (x4) granularity leads to 36% (67%) improvement in resolution

Resonant VBS Di-Higgs Production in 4τFinal StatePhys. Rev. D 91, 1140

Phys. Rev. D 91, 114018 (2015) S. Chekanov, A. V. Kotwal, M. Low

17

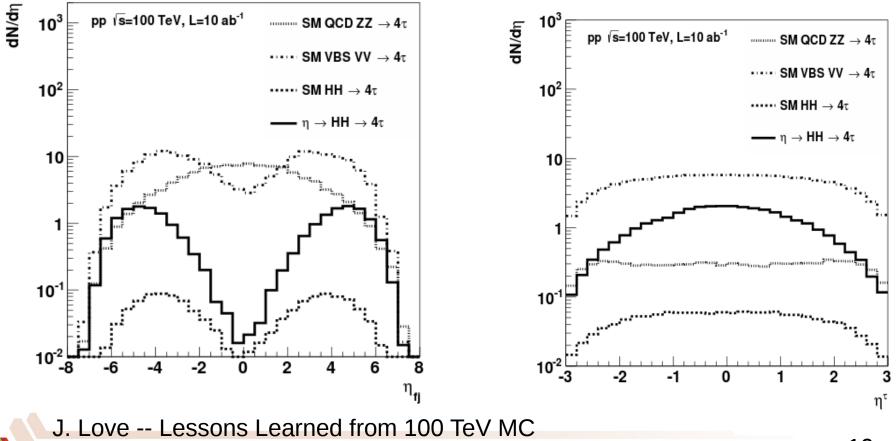

Resonant VBS to di-Higgs


New composite η decays to SM Higgs

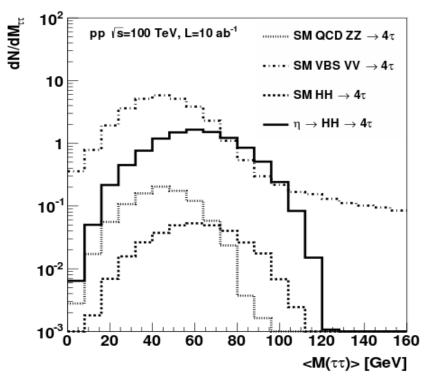
- Only longitudinal bosons contribute
- Each Higgs decays to ττ
- Final state two jets and 4τ's
 - Possible to use Large-R Higgs to $\tau\tau$ jets
 - Anti- k_{τ} R=0.2 jets used for τ 's

Main backgrounds

SM processes:
 VV, HH, and VBS VV, HH

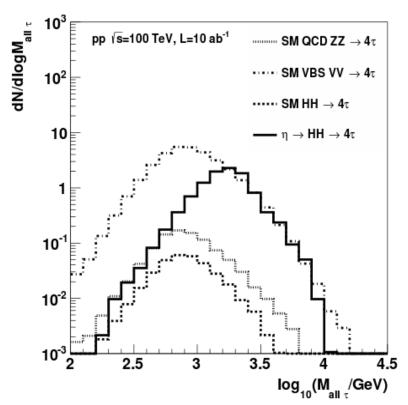


- Assume LHC-like τ-ID performance
 - Efficiency 60%
 - QCD Fake rate ~2%
- τ-decays extremely collimated
 - For 1 TeV $p_T \sim 2mm$ spread 1 m from interaction point
 - 85% One charged track plus EM showers


Pseudo-rapidity Distributions

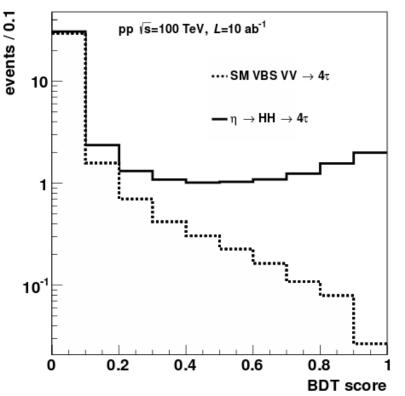
- Jets in VBS process dominantly forward
 - At 100 TeV Collider <η> ~5

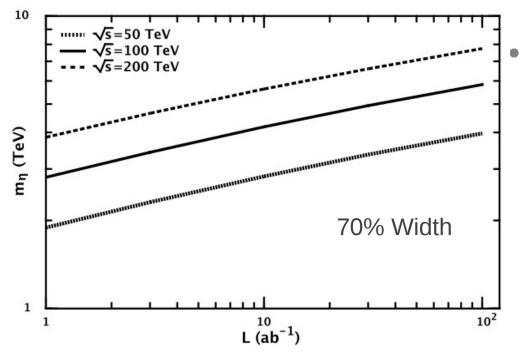
- Final τ's from η to HH more central than backgrounds
 - Generator level requirement $|\eta^{\tau}| < 3$



Two- and Four-τ Mass Distributions

• Missing transverse momentum results in Higgs peak shifted off resonance


- All combinations of tagged jets tested to give masses consistent with Higgs
 - Four-τ mass shows peak for η
 - Further improved with E_T^{miss} included


J. Love -- Lessons Learned from 100 TeV MC

Boosted Decision Tree Performance

- SM backgrounds make hard cuts inefficient
- BDT built from event level kinematic distributions
 - TMVA BDT trained against irreducible SM VBS VV→4τ
- Used to compute likelihood of the background only hypothesis and test signal significance

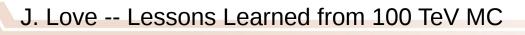
Discovery Potential

L		$m_{\eta} (\text{TeV})$	
(ab^{-1})	$\sqrt{s} = 50 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$	$\sqrt{s} = 200 \text{ TeV}$
1	1.89	2.81	3.85
3	2.31	3.42	4.65
10	2.83	4.18	5.63
30	3.36	4.94	6.60
100	3.97	5.83	7.74

J. Love -- Lessons Learned from 100 TeV MC

- 5σ discovery sensitivity for 70% width η
 - Sensitivity follows power law scaling with Luminosity

$$m_{\eta}^{5\sigma} \propto \mathcal{L}^{lpha}$$


- Where α = 0.2 (0.16) for 20% (70%) width η
- Sensitivity follows power law scaling with COM

 $m_\eta^{5\sigma} \propto (\sqrt{s})^\beta$

- For $\sqrt{s} < 100$ TeV, $\beta = 0.5$ (0.56) for 20% (70%) width η
- For \sqrt{s} between 100-200 TeV β = 0.34 (0.43) for 20%(70%) width η

Summary

- Future proton colliders have great potential for searches for new resonances decaying to 3rd generation final states
 - For ttbar resonances the hadronic final state seems most promising
 - Jet substructure mass+shower variables combined with high efficiency b-tagging give sensitivity in the fully hadronic final state
 - Possible 5σ discovery of up to 20 TeV Z' decaying to ttbar in 100 TeV pp data
 - For τ-ID LHC-like performance critical
 - High- $p_{\tau} \tau$ -tagging must maintain LHC-like performance
 - Possible 5σ discovery of up to 6 TeV **n** in di-Higgs to 4τ final state in 100 TeV pp data
- These performance requirements have serious implications on detector design
 - Extremely fine granularity calorimetry well motivated by jet substructure variable resolution
 - Large pseudo-rapidity coverage needed to capture forward jets of VBS processes
 - Precision tracking to maintain b-tagging performance in increasingly dense environment
- Thank you!

Additional Material

MC Samples

• Signal (LO QCD). PYTHIA8, MADGRAPH5

- f \overline{f} → Z0' with M=8,10,12,14,16,18,20 TeV. Pure Z' contribution. Γ /M=3%
- q q → g_{KK} with M=8,10,12,14,16,18,20 TeV. Pure g_{KK} contribution. Γ /M=16%
- pp \rightarrow η jj with η \rightarrow HH \rightarrow 4 τ with $\Gamma/M{=}~20\%$ and 70%

• Background processes:

- PYTHIA8 for QCD backgrounds
 - NLOjet++ (NLO) to extract the k-factor (MSTW2008nlo68cl for PDF)
- HERWIG++ x k-factor as alternative (contain W/Z brem. events)
- SM tt process was generated with Madgraph (MSTW2008nlo68cl for PDF)
 - NLO QCD+ HERWIG6
- PYTHIA8 for all SM boson processes (like H/Z/W+jets)
 - Not too realistic, but the usage of "realistic" ALPGEN should not change conclusions
- Monte Carlo samples from the HepSim repository:
 - http://atlaswww.hep.anl.gov/hepsim/

hep-ph > arXiv:1403.1886

From S. Chekanov

Software Monte Carlo toolkit for this study

• Monte Carlo samples from the HepSim repository:

hep-ph > arXiv:1403.1886

From S. Chekanov

26

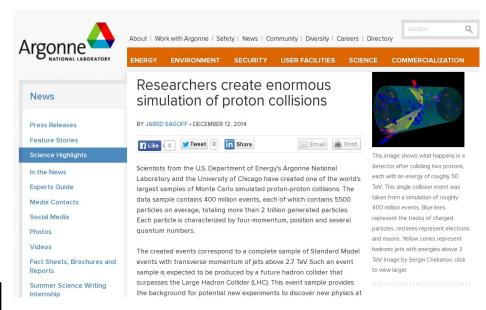
- http://atlaswww.hep.anl.gov/hepsim/
- Select $p \rightarrow \leftarrow p$ then 100 TeV

Reposito Selected:	pp collision	dictions for HEF s, 100000 GeV e		reposi	tory						
	‡ entries				,		Previous 1 2 Next	Search:			
Id 🔺	≑	E (GeV) 🍦	Name	÷	Generator	¢	Process		Topic 🔶	Info 🍦	Url
1	рр	100000.0	higgs_pythia8_100tev		PYTHIA8		gg2Httbar and qqbar2Httbar	н]gs	Info	URL link
2	рр	100000.0	higgs_ttbar_mg5		MADGRAPH+HERWIG6		Higgs+ttbar (NLO+PS)	Hi	jgs	Info	URL link
3	рр	100000.0	kkgluon_ttbar_1tev_pythia8		PYTHIA8		KKgluon (1 TeV) to ttbar	Ex	otic	Info	URL lin
4	рр	100000.0	kkgluon_ttbar_4tev_pythia8		PYTHIA8		KKgluon (4 TeV) to ttbar	Ex	otic	Info	URL lin
7	рр	100000.0	qcd_herwigpp_pt2700		HERWIG++		All dijet QCD events	SM	I.	Info	URL lin
8	рр	100000.0	kkgluon_ttbar_8tev_pythia8		PYTHIA8		KKgluon(8 TeV) to ttbar	Ex	otic	Info	URL lin
9	рр	100000.0	kkgluon_ttbar_16tev_pythia8		PYTHIA8		KKgluon (16 TeV) to ttbar	Ex	otic	Info	URL lin
10	рр	100000.0	kkgluon_ttbar_20tev_pythia8		PYTHIA8		KKgluon (20 TeV) to ttbar	Ex	otic	Info	URL lin
11	рр	100000.0	qcd_pythia8_pt300		PYTHIA8		All dijet QCD events	SM	I.	Info	URL lin
12	рр	100000.0	qcd_pythia8_pt900		PYTHIA8		All dijet QCD events	SM	I.	Info	URL lir
13	рр	100000.0	qcd_pythia8_pt2700		PYTHIA8		All dijet QCD events	SM	I.	Info	URL lir
14	рр	100000.0	qcd_pythia8_pt8000		PYTHIA8		All dijet QCD events	SM	I	Info	URL lin
15	рр	100000.0	ttbar_mg5		MADGRAPH+HERWIG6		p p > t t~ [QCD] (ttbar at NLO)	То	p	Info	URL lin
16	рр	100000.0	ttbar_pt2500_mg5_lo		MADGRAPH+HERWIG6		$p p > t t \sim (ttbar at LO)$	То	P	Info	URL lin
20	рр	100000.0	ttbar_pythia8_pt900		PYTHIA8		g g -> t tbar, q qbar -> t tbar	То	Þ	Info	URL lin
21	рр	100000.0	ttbar_pythia8_pt300		PYTHIA8		g g -> t tbar, q qbar -> t tbar	То	p	Info	URL lin
22	рр	100000.0	ttbar_pythia8_pt2700		PYTHIA8		g g -> t tbar, q qbar -> t tbar	То	Þ	Info	URL lin
23	рр	100000.0	ttbar_pythia8_pt8000		PYTHIA8		g g -> t tbar, q qbar -> t tbar	То	p	Info	URL lin
24	рр	100000.0	ttbar_mcfm_100tev		MCFM		ttbar production at NLO	То	Þ	Info	URL lin

Data samples & analysis program are public

MC samples for this study

http://atlaswww.hep.anl.gov/hepsim/


MC event samples for Z' / $g_{\kappa\kappa}$ studies:

- qcd_herwigpp_pt2700
- qcd_pythia8_pt2700
- ttbar_pythia8_pt2700
- pythia10tev_wjet2700
- ttbar_pt2500_mg5
- ttbar_pt2500_mg5_lo
- zprime*_pythia8
- kkgluon_ttbar*_pythia8

Includes the description of how to:

- download samples
- build an analysis program
- run fast detector simulation (Delphes)

World's largest public MC sample hosted by HepSim used in this study

Pythia8 dijets. Int. luminosity $\sim 10 \text{ ab}^{-1}$ 0.4 billion pp events at 100 TeV

J. Love -- Lessons Learned from 100 TeV MC

From S. Chekanov