Large Piwinski angle and crab waist scheme in LHC

K. Ohmi, KEK CARE-HHH, LHC beam-beam and beam-beam compensation 28 Aug.,2008

Thanks to F. Zimmermann, J.P. Koutchouk, O. Bruning, R. Calaga, R. Tomas, Y. Sun, A. Morita, M. Aiba

Two approach toward high luminosity in e⁺e⁻ colliders

• High current, high beam-beam parameter.

• Low emittance, low beta, low current, socalled super bunch collision

Super B

	SuperKEKB	Middle	SuperB (LNF/SLAC)
εx	9.00E-09	6.00E-09	0.8E-09
εy	4.50E-11	6.00E-11	2E-12
βx (mm)	200	50	9
βy (mm)	3	0.5	0.133
σz (mm)	3	6	6
νs	0.025	0.01	0.012/0.026
ne	5.50E+10	5.50E+10	1.9E+10
np	1.26E+11	1.27E+11	3.3E+10
$\theta/2$ (mrad)	0	15	25
ξx	0.397	0.022	
ξy	0.794->0.24	0.179	
Lum (W.S.)	8E+35	1.00E+36	1.00E+36
Lum (S.S.)	8.25E35	8-9E35	

• Crab crossing

Crab waist

- Add sextupole magnets at both side of collision point for finite crossing collsion.
- Effective potential is expressed as follows, $U(x,y,z)\delta(s-s^*)+Kxp_v^2\delta(s-s^*-\varepsilon)-Kxp_v^2\delta(s-s^*+\varepsilon)$
- Put sextupole magnets both side of the collision point at the vertical betatron phase difference, $\pi(2n+1)/2$ and horizontal m π .

Crab waist scheme (P. Raimondi et al.)

$$\mathbf{M} = e^{-:H_I} \mathbf{M}_0 e^{:H_I}$$
$$H_I = \frac{a}{2} x p_y^2$$
$$\overline{y} = y + \frac{\partial H_I}{\partial P_y} = y + a x P_y \qquad \overline{p_x} = p_x - \frac{\partial H}{\partial x} = p_x - a p_y^2$$

• Take linear part for y, since x is constant during collision.

$$\begin{pmatrix} \overline{\beta} & -\overline{\alpha} \\ -\overline{\alpha} & \overline{\gamma} \end{pmatrix} = T \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} T^{t} = \begin{pmatrix} \beta + \frac{a^{2}x^{2}}{\beta} & \frac{ax}{\beta} \\ \frac{ax}{\beta} & \frac{1}{\beta} \end{pmatrix}$$
$$T = \begin{pmatrix} 1 & ax \\ 0 & 1 \end{pmatrix}$$

$$M(s) \begin{pmatrix} \beta + \frac{a^2 x^2}{\beta} & \frac{ax}{\beta} \\ \frac{ax}{\beta} & \frac{1}{\beta} \end{pmatrix} M^t(s) = \begin{pmatrix} \beta + \frac{(s+ax)^2}{\beta} & \frac{s+ax}{\beta} \\ \frac{s+ax}{\beta} & \frac{1}{\beta} \end{pmatrix}$$
$$\frac{S+ax}{\beta} = \frac{1}{\beta} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$\frac{S+ax}{\beta} = \frac{1}{\beta} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

 β waist is shifted to s=-ax

• Beam particles with various x collides with other beam at their waist.

Beam shape on red beam frame

Taylor map analysis for KEKB

• Resonance line $v_x - 2v_y = k$ is effective for the beam-beam limit in e^+e^- colliders.

4-th order Coefficients as a function of crab sextupole strength, кекв

- H=K x p_y²/2, theoretical optimum, K=1/xangle.
- Clear structure- 220,121
- Flat for sextupole strength- 400, 301, 040

Tune scan of luminosity for super B

Crab waist ON
 OFF

A simple picture of the crab waist

$$H_I = \frac{a}{2} x p_y^2$$

$$y(s) = y_0 + axp_y + p_y s \approx axp_y + p_y s \qquad \beta_y << \sigma_z$$

$$x(s) = x_0 + p_x s \approx x_0 \qquad \qquad \beta_x > \sigma_z$$

- The distribution is Gaussian for x_0 and p_{v0} .
- Non-Gaussian distribution for x(s), y(s).
- $y(s)=y_0$ for $a = -\frac{s}{x} = -\frac{1}{2\theta_h}$ s independent because of $x=s\theta_h$

Beam distribution at s

-2 -1.5 -1 -0.5

0

x (mm)

0.5 1

1.5 2

Strength of Crab waist sextupole

• Sextuples are located a position where the betatron phase difference is $n\pi$ and $(n+1/2)\pi$ for horizontal and vertical, respectively. The strength is

$$K_2 = \frac{B''L}{p/e} = \frac{1}{2\theta_h} \frac{1}{\beta_y \beta_y^*} \sqrt{\frac{\beta_x^*}{\beta_x}}$$

- For LHC, $\beta_x = \beta_y = 2000m$, $\beta_x * = \beta_y * = 0.25m$ and $\theta_h = 140\mu rad$, $K_2 = 0.08$.
- This value is not very large, since the strength of the normal sextupoles $|K_2| = \left|\frac{B''L}{B\rho}\right| \approx 0.05$

Crab waist scheme at LHC

- The waist position can be shifted along the axis of the colliding beam. However the gain is week for $\beta_{xy} > \sigma_z$.
- Betatron phase of x and y varies simultaneously in the round beam.

Possible condition for crab waist in LHC An example

- ϕ =3.5 in LPA option. β_{γ} can be squeezed to σ_x/ϕ =2.1cm. L increases (14/2.1)^{1/2}=2.6 times. ξ_{γ} decreases and ξ_x is small for LPA.
- Crab waist has an opportunity to work.

Another possibility Waist control for parasitic collision

• Betatron phase of beam particles rotate $\gamma \pi/2$ at parasitic collision points.

$$H = \frac{a}{6} p_x^3 + \frac{b}{2} p_x p_y^2$$

$$x(s) = x_0 + \frac{a}{2} p_x^2 + \frac{b}{2} p_y^2 + p_x s$$

$$y(s) = y_0 + b p_x p_y + p_y s$$

<< *S*

- The distribution is Gaussian for p_x and p_y .
- Non-Gaussian distribution for x(s) and y(s).
- Choosing a and b, beam distribution can be distorted at parasitic collision points.

• $x(s)=x_0$ • $y(s)=y_0$ $\frac{a}{2}p_x^2 + \frac{b}{2}p_y^2 + p_x s = 0$ $a = -\frac{2s}{p_x} - b\frac{p_y^2}{p_x^2}$ • $y(s)=y_0$

$$bp_x p_y + p_y s = 0$$

$$b = -\frac{s}{p_x} \left(= -\frac{s}{2\theta} \right)$$

- $p_x=1/2\theta$ for parasitic encounter.
- The condition is s dependent and coupled for x and y.
- For s=>-s, the condition break.
- But this is Garbage idea.

β =0.25m, 140 μ rad

• a=30000, b=10000. Sorry for showing garbage.

Crab waist in the nominal and upgrade LHC

- Crab waist sextupoles may have some effects on halo in nominal or upgrade LHC.
- In the beam intensity, the effects are not seen.
- The effects in higher intensity (Np=10¹²) is investigated.

Large Piwinski Angle scheme

$$L = \frac{I\gamma}{r_p e\beta} \xi_N$$

- For a target Luminosity, there are choices for keeping $\xi,\,\beta$ and ${\it I}.$
- For example, increasing Piwinski (crossing) angle and bunch population can keep ξ. To keep I, bunch repetition is decreased.
- This is gain for avoiding parasitic interaction depending on arrangement of separation magnet and wires.

LPA or crab cavity scheme

- For $\sigma_z < \beta_{xy}$, both scheme seems to be compatible.
- Crab waist scheme works well for $\sigma_z > \beta_v$.
- Crab cavity installed in LPA scheme can deliver the same or more luminosity. If the beambeam parameter becomes too high due to the crab cavity, the bunch population is decreased.
- Luminosity leveling.

F. Zimmermann, PAC07, J.P. Koutchek, EPAC08

Table 1: Parameters for the (1) nominal and (2) ultimate LHC compared with those for three upgrade scenarios with (3) shorter bunches at 12.5-ns spacing [old baseline], (4) more strongly focused ultimate bunches with early separation at 25-ns spacing [ES], (5) longer intense flat bunches at 50-ns spacing in a regime of large Piwinski angle [LPA]. The numbers refer to the performance without luminosity leveling.

parameter	symbol	nominal	ultimate	old	ES	LPA	
number of bunches	n_b	2808	2808	5616	2808	1404	2808
protons per bunch	$N_b \ [10^{11}]$	1.15	1.7	1.7	1.7	4.9	2.5
bunch spacing	$\Delta t_{\rm sep}$ [ns]	25	25	12.5	25	50	25
average current	<i>I</i> [A]	0.58	0.86	1.72	0.86	1.22	1.22
normalized transverse emittance	$\gamma \epsilon ~[\mu m]$	3.75	3.75	3.75	3.75	3.75	3.75
longitudinal profile		Gaussian	Gaussian	Gaussian	Gaussian	uniform	Gaussian
rms bunch length	σ_z [cm]	7.55	7.55	3.78	7.55	11.8	7.55
beta function at IP1&5	β* [m]	0.55	0.5	0.25	0.08	0.25	0.14
(effective) crossing angle	$\theta_c [\mu rad]$	285	315	445	0	381	786
Piwinski angle	ϕ	0.4	0.75	0.75	0	2.01	
hourglass factor	$F_{ m hg}$	1.00	1.00	1.00	0.86	0.99	
peak luminosity	$\hat{L} [10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	1.0	2.3	9.2	15.5	10.6	
events per crossing		19	44	88	294	403	
rms length of luminous region	$\sigma_{\rm lum}$ [mm]	45	43	21	53	37	
initial luminosity lifetime	$ au_{ m L}$ [h]	22.2	14.3	7.2	2.2	4.5	
average luminosity ($T_{ta} = 10$ h)	$L_{\rm av} \ [10^{34} \ {\rm cm}^{-2} {\rm s}^{-1}]$	0.5	0.9	2.7	2.4	2.5	
optimum run time ($T_{ta} = 10$ h)	$T_{\rm run}$ [h]	21.2	17.0	12.0	6.6	9.5	
average luminosity ($T_{ta} = 5$ h)	$L_{\rm av} \ [10^{34} \ {\rm cm}^{-2} {\rm s}^{-1}]$	0.6	1.2	3.7	3.6	3.5	
optimum run time ($T_{ta} = 5$ h)	$T_{\rm run}$ [h]	15.0	12.0	8.5	4.6	6.7	
e-cloud heat load for $\delta_{\max} = 1.4$	$P_{\rm ec}$ [W/m]	1.07	1.04	13.3	1.0	0.4	
e-cloud heat load for $\delta_{\max} = 1.3$	$P_{\rm ec}$ [W/m]	0.44	0.6	7.9	0.6	0.1	
SR heat load	$P_{\rm SR}$ [W/m]	0.17	0.25	0.5	0.25	0.36	
image-current heat load	$P_{\rm ic}$ [W/m]	0.15	0.33	1.85	0.33	0.70	

Luminosity with crab cavity in LPA-II

 Luminosity and beam-beam parameter for LPA-II (393x2 µrad) with crab cavity

Summary

• We could not find good solution for the crab waist scheme in LHC yet.