A.Finch

Measurement of the Cross Section for open b-Quark Production in Two-Photon Interactions at LEP

Alex Finch for the ALEPH Collaboration

- Measurement of open b-quark production in LEPII data 698 $\rm pb^{-1}$, $\sqrt{s}=130\sim209\,GeV$
- First use of lifetime information to identify heavy flavour quarks in $\gamma\gamma$

Contents

- Background
- "Tools of the Trade"
- PreSelection, and Selection
- Weighted Selection "IDA"
- Sytematic Errors
- Cross checks
- Conclusions

Introduction

- $\sigma(\gamma\gamma \rightarrow b\bar{b}X)$ reliably calculable in NLO QCD due to b quark mass.
- $\sigma = 2.1 \sim 4.5 \text{ pb}, \sim 0.01 \times \sigma(\gamma \gamma \rightarrow c\bar{c}X) \sim 0.01 \times \sigma(\gamma \gamma \rightarrow uds)$

Direct

Single Resolved

2

Measurement of the Cross Section for open b-Quark Production ... **Existing Results**

One published measurement by

L3 $(12.8 \pm 1.7_{\text{stat}} \pm 2.3_{\text{syst}})$ pb.

• Two conference reports:

All measured using high p_t leptons.

The ALEPH Detector

Measurement of the Cross Section for open b-Quark Production ... **Tools of the Trade (Software)**

Monte Carlo

- **PYTHIA 6.1** for all $\gamma\gamma \to X$
 - b and c, direct and resolved massive matrix elements.
 - (resolved: photon's pdf was SaS 1D)
- $e^+e^- \rightarrow q\bar{q}$ -" KK " Monte Carlo
- HERWIG used to model $\gamma\gamma \rightarrow b\bar{b}X$ (for systematic error calculations)

Jet Finding

- Non standard Jet Finder 'PTCLUS' used.
- Similar to LUCLUS
- Better for the resolved events than DURHAM style jet finders.
- Optimized so that b jets in direct and resolved are similar.
- Ask me at the end if you need a detailed description!

Note: "Jet 1" has mass nearest 5.0, "Jet 2" next nearest etc.

Tools of the trade ... b tagging

Based on

Signed Impact Parameter

Definition of Signed Impact Parameter

Jet Atis

Track helix

Fit negative $S \Rightarrow$

Deriveprob-abilitythattrackisfrommainvertex.

Primary Vertex Impact Parameter Magnitude

Point of closest approach

of track to jet is in the jet

direction so sign is posi-

tive for this track.

Calculate significance S

 $S = \frac{\text{Impact parameter}}{\text{error}}$

Combine probabilities to calculate:

*P*_{jet} - probability that all tracks in jet came from main vertex

P_{event} - likewise for all tracks in event

6

Measurement of the Cross Section for open b-Quark Production ... Event Preselection A.Finch

Select $\gamma \gamma \rightarrow hadrons$

- > 4 charged tracks
- $4 < W_{vis} < 40 \, {\rm GeV}/c^2$
- Energy in luminosity calorimeters < 30 GeV
- p_t of event < 6 GeV/c
- Thrust < 0.97

Measurement of the Cross Section for open b-Quark Production ... Event Selection

A.Finch

Enhance $\gamma \gamma \rightarrow b \overline{b} X$

- > 6 charged tracks
- $8 < W_{vis} < 40 \, {\rm GeV}/c^2$
- at least two jets

- *P*_{event} < 0.05
- the third largest impact parameter significance *S* > 0
- the fourth largest impact parameter significance S > -10

A.Finch

Iterative Discriminant Analysis (Overview)

IDA, an event weighting method...

• Input:

variables which can distinguish signal / background.

- Output:
 - a single number -

high values are signal

low values are background.

- "Trained" on Monte Carlo.
- Extension of standard linear discrimination.
- Includes products of variables.
- Analytical method (just one matrix inversion).
- "Iterative" means

A selection may be applied and a new discriminant calculated for the remaining events

• Ask me at the end if you need a detailed description!

A.Finch

IDA as used in this analysis

Measurement of the Cross Section for open b-Quark Production ... Efficiency Calculation

A.Finch

Efficiencies : 0.022 (direct), 0.016 (resolved)

 E^i , p_z^i are the energy and longitudinal momentum of jet i E^{tot} and p_z^{tot} are the energy and longitudinal momentum of the whole event

Result: Mean Efficiency is 0.0184 ± 0.0009

Results and Systematic Uncertainties

Final selection of 93 events with a background of 24.2

$$\begin{array}{ll} \textbf{77\%} & \gamma^*\gamma \rightarrow \mathsf{c}\bar{\mathsf{c}}\mathsf{X} \\ \textbf{17\%} & \gamma^*\gamma \rightarrow X \ \textbf{(}Q^2 > 6\textbf{)} \\ \textbf{7\%} & \mathrm{e}^+\mathrm{e}^- \rightarrow \mathsf{q}\bar{\mathsf{q}} \end{array}$$

Systematic Uncertainties

12% error on the background from uncertainty on measured cross sections 8.6% uncertainty on the efficiency found by using HERWIG 11% difference due to $W_{\rm vis}$ dependence by setting maximum $W_{\rm vis}$ cut 30 GeV/ c^2

Stability Cross Check

$W_{\rm Vis}$ Cross Check

ALEPH 30 Events / 5.0 GeV/c² Data Signal (Direct term) 25 Signal (Resolved term) Background 20 Signal plus background $W_{\rm Vis}$ not used in IDA 15 Check of direct/resolved fit 10 5 ٩٥ 45 50 W_{vis} (GeV/c²) 20 25 15 30 35 40

Lepton p_t Cross Check

Conclusions

The cross section for the process $e^+e^- \rightarrow e^+e^-b\bar{b}X$ has been measured to be

 $\sigma(e^+e^- \to e^+e^-b\bar{b}X) = (5.4 \pm 0.8_{stat} \pm 0.8_{syst}) pb$

which is consistent with the prediction of NLO QCD of between 2.1 and 4.5 pb but barely consistent with the result quoted by the L3 Collaboration, $(12.8 \pm 1.7_{stat} \pm 2.3_{syst})$ pb.

For more details see: http://arxiv.org/abs/0706.3150

A.Finch

- Start from most energetic Eflow object.
 - \Rightarrow Loop through objects in order of decreasing energy.
 - \Rightarrow If angle between object and jet $<90^{\circ}$
 - and p_t with respect to $p + p_{jet} < 0.5$ GeV/c then add object to jet.
 - \Rightarrow Otherwise object starts a new jet
 - \Rightarrow Repeat until all objects assigned.
- Close Jets are merged

Distance between jets $Y = M^2/E_{\text{vis}}^2$ *M* is the invariant mass of pair of jets, assumed to be massless,

 $E_{\rm vis}$ is the visible energy.

Pair with smallest Y is merged provided

Y < 0.1 and they are within 90°

- Objects with larger p_t with respect to their jet than to another jet.
 - \Rightarrow reassign object to the other jet.

A maximum of five reassignments per merger.

The last two steps are repeated until no pair of jets has Y < 0.1.

A.Finch

Iterative Discriminant Analysis (Detailed)

 \bullet For each event fill a vector \boldsymbol{y} containing

the n variables and

 $(n^2 - n)/2$ products of those variables.

• Calculate the variance matrix $V = V_s + V_b$,

where \mathbf{V}_{S} is the variance matrix of the signal

and $~~\mathbf{V}_b$ is the variance matrix of the background

 V_{S} and V_{b} are weighted so that they have equal importance. \bullet Calculate $\Delta\mu$,

the difference in the means of the signal and background, for each element of $\mathbf{y}.$

- Invert the variance matrix V and multiply by $\Delta\mu$, to obtain the vector of coefficients $a=V^{-1}\Delta\mu.$
- For each event calculate $D = y^{T}ay$.

If necessary apply a selection to the events at some value of *D* and repeat the procedure as required. The IDA process does not prescribe how such a cut should be chosen, or how many iterations should be performed.

Summary of the analysis in numbers

Sample	Cross sect-	Analysis stage					
Campie	ion (pb)	Presel	Selection	IDA 1	IDA 2	IDA 3	
$\gamma\gamma ightarrow uds$	16000	89	73	12	9	0	per-
$\gamma\gamma ightarrow {\sf C}{ar {\sf C}} X$	930	10	25	40	35	23	cent
$\gamma^*\gamma \to X$	84	0	1	4	5	5	of
$e^+e^- \rightarrow q\bar{q}$	83	0	0	2	2	2	total
$\gamma\gamma ightarrow {\sf b}{ar {\sf b}}X$	4	0	1	41	50	70	
data	-	2696021	16810	244	197	93	events