Alex Finch for the ALEPH Collaboration

- Measurement of open b-quark production in LEPII data $698 \mathrm{pb}^{-1}, \sqrt{s}=130 \sim 209 \mathrm{GeV}$
- First use of lifetime information to identify heavy flavour quarks in $\gamma \gamma$

Contents

- Background
- "Tools of the Trade"
- PreSelection, and Selection
- Weighted Selection "IDA"
- Sytematic Errors
- Cross checks
- Conclusions

Introduction

- $\sigma(\gamma \gamma \rightarrow \mathrm{b} \overline{\mathrm{b}} X)$ reliably calculable in NLO QCD due to \mathbf{b} quark mass.
- $\sigma=2.1 \sim 4.5 \mathrm{pb}, \sim 0.01 \times \sigma(\gamma \gamma \rightarrow c \bar{c} X) \sim 0.01 \times \sigma(\gamma \gamma \rightarrow u d s)$

Direct

Single Resolved

Existing Results

- One published measurement by

L3 $\left(12.8 \pm 1.7_{\text {stat }} \pm 2.3_{\text {syst }}\right) \mathrm{pb}$.

- Two conference reports:

OPAL ($14.2 \pm 2.5_{\text {stat }} \pm 5.3_{\text {syst }}$) pb. (Photon 2000)
DELPHI ($\left.14.9 \pm 3.3_{\text {stat }} \pm 3.4_{\text {syst }}\right) \mathrm{pb}$
(Photon 2003).

Charm agrees with QCD prediction Beauty is significantly above

All measured using high p_{t} leptons.

L3 results for (a) electrons and (b) muons

Vertex
DetectorInner Tracking
Chamber
Time Projection Chamber

-

Electromagnetic Calorimeter

Superconducting
Magnet Coil
Hadron
Calorimeter
Muon
Chambers
Luminosity
Monitors

Monte Carlo

- PYTHIA 6.1 for all $\gamma \gamma \rightarrow X$
b and c, direct and resolved - massive matrix elements.
(resolved: photon's pdf was SaS 1D)
- $e^{+} e^{-} \rightarrow q \bar{q}$-" KK " Monte Carlo
- HERWIG used to model $\gamma \gamma \rightarrow \mathrm{b} \overline{\mathrm{b}} \times$
(for systematic error calculations)

Jet Finding

- Non standard Jet Finder 'PTCLUS’ used.
- Similar to LUCLUS
- Better for the resolved events than DURHAM style jet finders.
- Optimized so that b jets in direct and resolved are similar.
- Ask me at the end if you need a detailed description!

Note: "Jet 1" has mass nearest 5.0, "Jet 2" next nearest etc.

Based on

Signed Impact Parameter

Definition of Signed Impact Parameter

Point of closest approach of track to jet is in the jet direction so sign is positive for this track.

Calculate significance S
$S=\frac{\text { Impact parameter }}{\text { error }}$

Fit negative $S \Rightarrow$

Derive probability that track is from main vertex.

Combine probabilities to calculate:
$P_{\text {jet }}-$ probability that all tracks in jet came from main vertex
$P_{\text {event }}$ - likewise for all tracks in event

Event Preselection

Select $\gamma \gamma \rightarrow$ hadrons

- > 4 charged tracks
- $4<W_{\text {vis }}<40 \mathrm{GeV} / c^{2}$
- Energy in luminosity calorimeters $<30 \mathrm{GeV}$
- p_{t} of event $<\mathbf{6} \mathrm{GeV} / c$
- Thrust < 0.97

Event Selection

Enhance $\gamma \gamma \rightarrow \mathrm{b} \overline{\mathrm{b}} \times$

- >6 charged tracks
- $8<W_{v i s}<40 \mathrm{GeV} / c^{2}$
- at least two jets
- $P_{\text {event }}<0.05$
- the third largest impact parameter significance $S>0$
- the fourth largest impact parameter significance $S>-10$

IDA, an event weighting method...

- Input:
variables which can distinguish signal / background.
- Output:
a single number -
high values are signal
low values are background.
- "Trained" on Monte Carlo.
- Extension of standard linear discrimination.
- Includes products of variables.
- Analytical method (just one matrix inversion).
- "Iterative" means

A selection may be applied and a new discriminant
calculated for the remaining events

- Ask me at the end if you need a detailed description!

IDA as used in this analysis

IDA Input:

- $P_{\text {event }}, P_{\text {jet1 }}, P_{\text {jet2 }}$
- mass and p_{t} of Jet 1
- 5 largest S
- the thrust of the event

Efficiencies: 0.022 (direct), 0.016 (resolved)

To find mean efficiency - need to know how much Direct and how much Resolved.
Fit to $x_{\gamma}^{\min }$ to find out.
$x_{\gamma}^{\min }=\min \left(x_{\gamma}^{+}, x_{\gamma}^{-}\right)$

$$
x_{\gamma}^{ \pm}=\frac{\sum_{i=1,2}\left(E^{i} \pm p_{z}^{i}\right)}{\left(E^{\operatorname{tot}} \pm p_{z}^{\text {tot }}\right)}
$$

E^{i}, p_{z}^{i} are the energy and longitudinal momentum of jet i $E^{\text {tot }}$ and $p_{z}^{\text {tot }}$ are the energy and longitudinal momentum of the whole event

Result: Mean Efficiency is 0.0184 ± 0.0009

Results and Systematic Uncertainties

Final selection of 93 events with a background of 24.2

$$
\begin{aligned}
77 \% & \gamma^{*} \gamma \rightarrow c \bar{c} X \\
17 \% & \gamma^{*} \gamma \rightarrow X\left(Q^{2}>6\right) \\
7 \% & e^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}
\end{aligned}
$$

Systematic Uncertainties
12% error on the background
from uncertainty on measured cross sections
8.6\% uncertainty on the efficiency
found by using HERWIG
11% difference due to $W_{\text {vis }}$ dependence
by setting maximum $W_{\text {vis }}$ cut $30 \mathrm{GeV} / c^{2}$

Stability Cross Check

$W_{\text {vis }}$ Cross Check

ALEPH
$W_{\text {vis }}$ not used in IDA
Check of direct/resolved fit

Expect
$\sim 14 e^{ \pm} \& \sim 14 \mu^{ \pm}$
in 74 b \bar{b} events.
Large b quark mass
\Rightarrow leptons have high p_{t} wrt jet. After selection, expect :

6 leptons from signal
+0.9 from background

See 6 leptons - consistent.

$$
\stackrel{y}{\sigma}_{0}^{8} E \quad \text { - Data }
$$

0
$\stackrel{0}{0}$
0
0
$\stackrel{0}{0}$
$\stackrel{0}{4}$
..... Signal (Direct term)
.-... Signal (Resolved term)
-...- Background
__ Signal plus background

The cross section for the process $e^{+} e^{-} \rightarrow e^{+} e^{-} b \bar{b} \times$ has been measured to be

$$
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{b} \overline{\mathrm{~B}} \mathrm{X}\right)=\left(5.4 \pm 0.8_{\text {stat }} \pm 0.8_{\text {syst }}\right) \mathrm{pb}
$$

which is consistent with the prediction of NLO QCD of between 2.1 and 4.5 pb
but barely consistent with the result quoted by the L3 Collaboration,

$$
\left(12.8 \pm 1.7_{\text {stat }} \pm 2.3_{\mathrm{syst}}\right) \mathrm{pb}
$$

For more details see: http://arxiv.org/abs/0706.3150

- Start from most energetic Eflow object.
\Rightarrow Loop through objects in order of decreasing energy.
\Rightarrow If angle between object and jet $<90^{\circ}$
and p_{t} with respect to $p+p_{\text {jet }}<0.5 \mathrm{GeV} / c$ then add object to jet.
\Rightarrow Otherwise object starts a new jet
\Rightarrow Repeat until all objects assigned.
- Close Jets are merged

Distance between jets $Y=M^{2} / E_{\text {vis }}^{2}$
M is the invariant mass of pair of jets, assumed to be massless,
$E_{\text {vis }}$ is the visible energy.
Pair with smallest Y is merged provided
$Y<0.1$ and they are within 90°

- Objects with larger p_{t} with respect to their jet than to another jet.
\Rightarrow reassign object to the other jet.
A maximum of five reassignments per merger.
The last two steps are repeated until no pair of jets has $Y<0.1$.

Iterative Discriminant Analysis (Detailed)

- For each event fill a vector y containing
the \mathbf{n} variables and
$\left(n^{2}-n\right) / 2$ products of those variables.
- Calculate the variance matrix $V=V_{s}+V_{b}$,
where V_{s} is the variance matrix of the signal
and $\quad V_{b}$ is the variance matrix of the background
V_{s} and V_{b} are weighted so that they have equal importance.
- Calculate $\Delta \mu$,
the difference in the means of the signal and background,
for each element of y.
- Invert the variance matrix V and multiply by $\Delta \mu$, to obtain the vector of coefficients $\mathrm{a}=\mathrm{V}^{-1} \Delta \mu$.
- For each event calculate $D=y^{T}$ ay.

If necessary apply a selection to the events at some value of D and repeat the procedure as required. The IDA process does not prescribe how such a cut should be chosen, or how many iterations should be performed.

Summary of the analysis in numbers

Sample	Cross sect-	Analysis stage					
	ion (pb)	Presel	Selection	IDA 1	IDA 2	IDA 3	
	16000	89	73	12	9	0	per-
$\gamma \gamma \rightarrow \mathrm{uds}$	10	c X	930	10	25	40	35
$\gamma^{*} \gamma \rightarrow X$	84	0	1	4	5	5	cent
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$	83	0	0	2	2	2	total
$\gamma \gamma \rightarrow \mathrm{b} \overline{\mathrm{b}} X$	4	0	1	41	50	70	
data	-	2696021	16810	244	197	93	events

