Study of $\pi \pi$ production in two-photon collisions at Belle

S.Uehara (KEK)

on behalf of The Belle Collaboration
Photon2007, 9 July, 2007, Paris
\qquad

Motivation of two-photon physics

Resonance formation or

Hard scattering with a quark line

Hadron production trom two quasi-real photons
($\left|\mathrm{q}^{2}\right|<0.001 \mathrm{GeV}^{2}$, with no-tag condition)
Exclusive processes with $\mathrm{W}_{r y}=0.6-4.5 \mathrm{GeV}$ at KEKB/Belle Wide energy region --- Various physics aspects
can be studied simultaneously.
Light-quark resonances, Charmonia
Perturbative /Non-perturbative QCD,
Hadron production mechanism
\qquad

General physics in $\gamma \gamma \rightarrow \pi^{+} \pi^{-} / \pi^{0} \pi^{0}$ final states

soft hadron exchange $\pi^{+} \pi^{-}$and $\pi^{0} \pi^{0}$:

Physics is almost the same, but gives independent information
Electromagnetic production as mesons: $\quad \sigma\left(\pi^{0} \pi^{0}\right) \ll \sigma\left(\pi^{+} \pi^{-}\right)$
Resonances ($\mathrm{I}=0, \mathrm{~J}^{\mathrm{PC}}=0^{++}$) decaying via strong interaction:

$$
\sigma\left(\pi^{0} \pi^{0}\right): \sigma\left(\pi^{+} \pi^{-}\right)=1: 2
$$

Test of QCD: $\sigma\left(\pi^{0} \pi^{0}\right) / \sigma\left(\pi^{+} \pi^{-}\right): \sim 0.03$ (LO) -0.5 ("handbag")
c.m.-energy (W) and angular dependences must also be examined.
\qquad

KEKB Accelerator and Belle Detector

- Asymmetric $\mathrm{e}^{-} \mathrm{e}^{+}$collider 8 GeV e- (HER) x 3.5 GeV e+ (LER) $V_{\mathrm{s}}=10.58 \mathrm{GeV} \Leftrightarrow \Upsilon(4 \mathrm{~S})$

Beam crossing angle: 22mrad
-Continuous injection
-Luminosity
$\mathrm{L}_{\max }=1.71 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$\int L d t \sim 710 \mathrm{fb}^{-1}$

High momentum/energy resolutions
CDC+Solenoid, CsI

Vertex measurement - Si strips
Particle identification
TOF, Si-aerogel, CDC-dE/dx,
RPC for K_{L} /muon

Results of $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$

Belle Collaboration

$$
\begin{array}{ll}
\mathbf{W}=\mathbf{0 . 8} \mathbf{- 1 . 5} \mathrm{GeV} & \begin{array}{l}
\text { Phys. Rev. D 75, 051101(R) (2007) } \\
\text { arXiv:0704.3538[hep-ex], } \\
\text { to appear in J. Phys. Soc. Jpn. (2007) }
\end{array} \\
\mathbf{W}=\mathbf{2 . 4 - 4 . 1} \mathbf{G e V} & \text { Phys. Lett. B 615, 39 (2005) }
\end{array}
$$

\qquad

$f_{0}(980)$ in $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$

$f_{0}(980)$
$85.9 \mathrm{fb}^{-1}$

- is an ordinary $\mathrm{q} \overline{\mathrm{q}}$ meson?
- an exotic state?
- some special theory needed?

Its two-photon coupling is a crucial key.
Prediction of Γ_{γ} :

uū, d ${ }_{\text {d }}$	--- $1.3-1.8 \mathrm{keV}$
ss	--- $0.3-0.5 \mathrm{keV}$
	0

π / μ separation:
by comparing energy deposit in the CsI calorimeter between data and MC

$f_{0}(980)$ appears as a small but statistically significant peak.

Fit to the $f_{0}(980)$ line shape

\square

New upper limit for $\mathrm{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-}\right)$

No $\eta^{\prime} \rightarrow \pi^{+} \pi^{-}$enhancement is seen near $958 \mathrm{MeV} / \mathrm{c}^{2}$ This is a \neq and CP mode; previous upper limit: $\operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-}\right)<0.02$ (HBC (1969))

New upper limit for

$$
\operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-}\right)<2.8 \times 10^{-3}
$$

 (interference with the non-resonant process allowed) $<3.3 \times 10^{-4}$ (no interference)
\qquad

$\pi^{+} \pi^{-}$measurements at high energies

PLB 615, 39 (2005)

Two-photon measurements of $\Gamma_{r r}\left(\chi_{c J}\right) B r(e V)$
$\Gamma_{\gamma \gamma} \operatorname{Br}\left(\chi_{\mathrm{c} 0} \rightarrow \pi^{+} \pi^{-}\right) \quad 15.1 \pm 2.1 \pm 2.3 \quad \Gamma_{\gamma \gamma} \operatorname{Br}\left(\chi_{\mathrm{c} 0} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}\right) 14.3 \pm 1.6 \pm 2.3$
$\Gamma_{\gamma \gamma} \operatorname{Br}\left(\chi_{\mathrm{c} 2} \rightarrow \pi^{+} \pi^{-}\right) \quad 0.76 \pm 0.14 \pm 0.11 \quad \Gamma_{\gamma \gamma} \operatorname{Br}\left(\chi_{\mathrm{c} 2} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}\right) 0.44 \pm 0.76 \pm 0.14$
\qquad

Preliminary results of $\gamma \gamma \rightarrow \pi^{0} \pi^{0}$

\square

Selection of $\pi^{0} \pi^{0}$ candidates

Based on data with an integrated luminosity of $95 \mathrm{fb}^{-1}$ Only 4 photons are visible

- Triggered by Calorimeter triggers
- No reconstructed track with

$$
\mathrm{p}_{\mathrm{t}}>0.1 \mathrm{GeV} / \mathrm{c}, \mathrm{dr}<5 \mathrm{~cm},|\mathrm{dz}|<5 \mathrm{~cm}
$$

- 2 or more photons OR 1 or more $\pi^{0} s$
- Just $2 \pi^{0} \mathrm{~S}$ with E (decay product photon) $>70 \mathrm{MeV}, \mathrm{p}_{\mathrm{t}}>0.15 \mathrm{GeV} / \mathrm{c}$
- Transverse-momentum (p_{t})-balance of the two π^{0} 's

$$
\left|\Sigma \mathbf{p}_{\mathrm{t}}\right|<0.05 \mathrm{GeV} / \mathrm{c}
$$

- Satisfying a rough trigger condition at offline:

N_gamma=4 or Esum_lab>1.25 GeV
in the ECL-trigger region, $17<\theta_{\text {lab }}<128.7 \mathrm{deg}$
\qquad

Trigger efficiency from the simulation

Trigger efficiency is determined by the trigger simulator, tsim after tunings of the energy thresholds for the total energy trigger (HiE) -1.15 GeV and for
counting number of clusters (Clst4)

$$
\text { - } 110 \mathrm{MeV}
$$

In each of 16 c.m. angular bins $0.0<\left|\cos \theta^{*}\right|<0.8$, Fitted by a two-dimensional function of $\left(\mathrm{W},\left|\cos \theta^{*}\right|\right)$

- 110 MeV

\qquad rnolon<UU/, у Juıy, LUU/, Ј. venara, belle

Raw-event distribution of $\pi^{0} \pi^{0}$

p_{t}-balance distributions and backgrounds

Detector acceptance not including trigger

Calculated from signal MC simulation and fitted by a smooth function

Around 11% at maximum, typically 5 \%
Large angular dependence due to geometrical condition of the detector Overall efficiency $=$ Acceptance $*$ trigger efficiency
\qquad

Invariant-mass resolution and Unfolding

W resolution --- $\sim 1.4 \% \times \mathrm{W}$, almost independently of W (from signal MC) Apply Unfolding to the experimental W distribution (in each angle region) for the smearing effect in the W direction using an asymmetric Gaussian (1.3\% higher side and 1.9 \% lower side).

Unfolding is applied in $0.9 \mathrm{GeV}<\mathrm{W}<2.4 \mathrm{GeV}$.

Wider bin-widths than the resolution are used in the other W regions.

\qquad

Cross sections of $\gamma \gamma \rightarrow \pi^{0} \pi^{0}$

\qquad

Systematic-error sources

Total

$$
\begin{array}{cl}
55 \%-10 \% & @ \mathrm{~W}<\sim 1.05 \mathrm{GeV} \\
\sim 9 \% & @ 1.05 \mathrm{GeV}<\mathrm{W}<\sim 2.7 \mathrm{GeV} \\
10 \%-11 \% & @ \mathrm{~W}>\sim 2.7 \mathrm{GeV}
\end{array}
$$

\qquad

Differential cross section (Angular dependence)

$\gamma \gamma \rightarrow \pi^{0} \pi^{0}$
Low $\mathbf{W} \rightarrow$ High-W Large angle enhancement appears \rightarrow disappears Small angle enhancement disappears \rightarrow appears
Change $\uparrow \sim 2.0 \mathrm{GeV}$

$W=1.95 \mathrm{GeV}$

\square

Resonant structures

Resonances:

Clearly seen: $\quad f_{0}(980), f_{2}(1270), \sim 1.65 \mathrm{GeV}, \sim 1.95 \mathrm{GeV}$
Hints with a lower significance: $\sim 1.45 \mathrm{GeV}, \chi_{\mathrm{c} 0}, \chi_{\mathrm{c} 2}$

Sizes of the charmonia
$\Gamma \gamma \gamma\left(\chi_{c 0}\right) \mathrm{B}\left(\chi_{c 0} \rightarrow \pi^{0} \pi^{0}\right):$
$8.4 \pm 2.2 \pm 0.8 \mathrm{eV}$
$\Gamma \gamma \gamma\left(\chi_{\mathrm{c} 2}\right) \mathrm{B}\left(\chi_{\mathrm{c} 2} \rightarrow \pi^{0} \pi^{0}\right):$
$0.29 \pm 0.23 \pm 0.03 \mathrm{eV} \quad(1.4 \sigma)$
Upper limit $<0.75 \mathrm{eV}(90 \% \mathrm{CL})$ Preliminary

The central values are consistent with the expectations from isospin invariance between the $\pi^{+} \pi^{-} / \pi^{0} \pi^{0}$ decays

\square

Cross section ratio $\sigma\left(\pi^{0} \pi^{0}\right) / \sigma\left(\pi^{+} \pi^{-}\right)$

Charmonium region is omitted from the plot. The ratio is $0.3-0.4$ at $\mathrm{W}>2.7 \mathrm{GeV}$
\qquad

Conclusion of $\pi^{+} \pi^{-}$measurement

- We measure the process $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$with $85.9 \mathrm{fb}^{-1}$ data.
- The differential cross sections are obtained in $0.8 \mathrm{GeV}<\mathrm{W}<1.5 \mathrm{GeV}$ and $\left|\cos \theta^{*}\right|<0.6$ in the $\gamma \gamma \mathrm{c} . \mathrm{m}$. frame. (\# We separately published before for the region $2.4 \mathrm{GeV}<\mathrm{W}<4.1 \mathrm{GeV}$)
- We confirm small but statistically significant peak from $f_{0}(980)$.
- New upper limit for P and CP violating process $\eta^{\prime} \rightarrow \pi^{+} \pi^{-}$is obtained.
\qquad

Summary for $\pi^{0} \pi^{0}$ measurement

- We measure the process $\gamma \gamma \rightarrow \pi^{0} \pi^{0}$ with $95 \mathrm{fb}^{-1}$ data.
- Preliminary results of the differential cross sections are obtained in $0.6 \mathrm{GeV}<\mathrm{W}<4.0 \mathrm{GeV}$ and $\left|\cos \theta^{*}\right|<0.8$ in the $\gamma \gamma \mathrm{c}$.m. frame.
- Several resonant structures are seen, including a statistically significant peak from $f_{0}(980)$.
- Behavior of the angular dependence (forward- and/or large-angle enhancements) changes drastically at around $\mathrm{W}=2.0 \mathrm{GeV}$.
- The cross section ratio $\sigma\left(\pi^{0} \pi^{0}\right) / \sigma\left(\pi^{+} \pi^{-}\right)$in 3 GeV region is obtained.
\qquad

BACKUP slides

\square

Measurements of two-photon processes at Belle

$$
\begin{aligned}
& \gamma \gamma \rightarrow \chi_{\mathrm{c} 2} \rightarrow \gamma \mathrm{~J} / \psi \quad \text { PLB 540, 33(2002) } \\
& \gamma \gamma \rightarrow\left(f_{2}^{\prime}(1525) \text { etc. } \rightarrow\right) \mathrm{K}^{+} \mathrm{K}^{-}(1.4-2.4 \mathrm{GeV}) \\
& \gamma \gamma \rightarrow\left(\chi_{\mathrm{c} 0}, \chi_{\mathrm{c} 2} \rightarrow\right) \pi^{+} \pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-}(2.4-4.1 \mathrm{GeV}) \\
& \text { EPJC 32, } 323 \text { (2003) } \\
& \gamma \gamma \rightarrow\left(\eta_{\mathrm{c}} \rightarrow\right) \mathrm{p} \overline{\mathrm{p}} \underline{(2.025-4.0 \mathrm{GeV})} \\
& \gamma \gamma \rightarrow \chi_{\mathrm{c} 2}{ }^{\prime} \rightarrow \mathrm{D} \overline{\mathrm{D}} \\
& \gamma \gamma \rightarrow\left(f_{0}(980) \text { etc. } \rightarrow\right) \pi^{+} \pi^{-}(0.8-1.5 \mathrm{GeV}) \\
& \text { PLB 615, } 39 \text { (2005) } \\
& \text { PLB 621, } 41 \text { (2005) } \\
& \text { PRL 96, } 082003 \text { (2006) } \\
& \text { arXiv:0704.3538[hep-ex], to appear in Jour. Phys. Soc. Jpn. (2007) } \\
& \gamma \gamma \rightarrow\left(\chi_{\mathrm{c} 0}, \chi_{\mathrm{c} 2} \rightarrow\right) \mathrm{K}^{+} \mathrm{K}^{-}(2.4-4.0 \mathrm{GeV}) \\
& \text { hep-ex/0609042v2, submitted to PLB } \\
& \gamma \gamma \rightarrow\left(\eta_{\mathrm{c}}, \chi_{\mathrm{c} 0}, \chi_{\mathrm{c} 2} \rightarrow\right) \pi^{+} \pi^{-} \pi^{+} \pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+} \pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{K}^{+} \mathrm{K}^{-} \\
& \text {arXiv:0706.3955[hep-ex], submitted to EPJC } \\
& \begin{array}{l}
\gamma \gamma \rightarrow a_{2}{ }^{\prime} \mathrm{s} \rightarrow-\pi^{+} \pi^{-} \pi^{0}(1.2-3.0 \mathrm{GeV}) \\
\gamma \gamma \rightarrow\left(\eta_{\mathrm{c}} \rightarrow\right) \Lambda \bar{\Lambda}, \Sigma^{0} \Sigma^{0}(2.3-4.0 \mathrm{GeV})
\end{array} \\
& \text { hep-ex/0610022 } \\
& \text { hep-ex/0609048 }
\end{aligned}
$$

\qquad

Reactions at KEKB/Belle

$$
\begin{aligned}
& \text { The cross sections observable there } \\
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{~B}} \quad---1.1 \mathrm{nb} \\
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \text { (uds) } \quad---2.1 \mathrm{nb} \\
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{c} \overline{\mathrm{c}} \quad---1.2 \mathrm{nb} \\
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \tau^{+} \tau^{-} \quad---0.9 \mathrm{nb} \\
& \gamma \gamma \rightarrow \text { hadrons }\left(\mathrm{W}_{\gamma \gamma}>0.8 \mathrm{GeV}\right)---\sim 1 \mathrm{nb} \\
& \text { (within the acceptance) }
\end{aligned}
$$

Luminosity Function for quasi-real $\gamma \gamma$ collisions

$$
\mathrm{d} \mathrm{\sigma}_{(\mathrm{in} \mathrm{ee})}=\sigma_{(\mathrm{in} \gamma \gamma)} \mathrm{L} \gamma \gamma(\mathrm{~W}) \mathrm{dW}
$$

Calculated with equivalent-photon approximation
\qquad

Two-meson exclusive final states

C = + resonances: Peak structure in the invariant mass distribution Test of QCD: c.m.-energy (W) dependence and angular dependence in high energies

General Analysis strategy

Invariant-mass of hadron pair $=\mathrm{W}$ (c.m. energy of $\gamma \gamma$)
Quasi-real two-photon collisions with final state fully reconstructed
--- strict transverse momentum balance is required

$$
\left(\left|\Sigma \mathbf{p}_{\mathrm{t}}\right|<50-200 \mathrm{MeV} / \mathrm{c}\right)
$$

This gives efficient background rejection
\qquad

Selection of $\pi^{+} \pi^{-}$candidates

Based on data with an integrated luminosity of $85.9 \mathrm{fb}^{-1}$

- Two charged tracks (oppositely charged) with $\mathrm{p}_{\mathrm{t}}>0.3 \mathrm{GeV} / \mathrm{c},-0.47<\cos \theta_{\text {lab }}<+0.82$
- $\left|\Sigma \boldsymbol{p}_{\mathrm{t}}{ }^{*}\right|($ in e+e- c.m.s) $<0.1 \mathrm{GeV} / \mathrm{c}$
$-\pi / K, \pi / p$ separations
using TOF, Aerogel-Cherenkov and $d E / d x$
- Muon background subtraction with fitting the energy-deposit distribution on ECL KLM (muon detector with iron filter) cannot be available in these low energies
\qquad

Differential cross section

Angular dependences at some energy points

Red dashed lines ---
Size of point-to-point systematic error

Systematic structure near $\left|\cos \theta^{*}\right|=0.45-0.55$ could be due to a measurement bias
\qquad

Fitting formula for $f_{0}(980)$

$$
\begin{equation*}
\sigma=\left|\frac{\sqrt{4.8 \pi \beta_{\pi}}}{W} \mathcal{F}^{f_{0}} e^{i \varphi}+\sqrt{\sigma_{0}^{\mathrm{BG}}}\right|^{2}+\sigma^{\mathrm{BG}}-\sigma_{0}^{\mathrm{BG}} \tag{1}
\end{equation*}
$$

where the factor 4.8 includes the fiducial angular acceptance $\left|\cos \theta^{*}\right|<0.6, \beta_{X}=\sqrt{1-\frac{4 M_{X}{ }^{2}}{W^{2}}}$ is the velocity of the particles X with mass M_{X} in the two-body final states, $\mathcal{F}^{f_{0}}$ is the amplitude of the $f_{0}(980)$ meson, which interferes with the helicity-0-background amplitude $\sqrt{\sigma_{0}^{\mathrm{BG}}}$ with relative phase φ, and σ^{BG} is the total background cross section. The amplitude $\mathcal{F}^{f_{0}}$ can be written as

$$
\begin{equation*}
\mathcal{F}^{f_{0}}=\frac{g_{f_{0} \gamma \gamma} g_{f_{0} \pi \pi}}{16 \pi} \cdot \frac{1}{D_{f_{0}}} \tag{2}
\end{equation*}
$$

where $g_{f_{0} X X}$ is related to the partial width of the $f_{0}(980)$ meson via $\Gamma_{X X}\left(f_{0}\right)=\frac{\beta_{X} g_{f_{0} X X}^{2}}{16 \pi M_{f_{0}}}$. The factor $D_{f_{0}}$ is given as follows [16]:

$$
\begin{aligned}
D_{f_{0}}(W)= & M_{f_{0}}^{2}-W^{2}+\Re \Pi_{\pi}^{f_{0}}\left(M_{f_{0}}\right)-\Pi_{\pi}^{f_{0}}(W) \\
& +\Re \Pi_{K}^{f_{0}}\left(M_{f_{0}}\right)-\Pi_{K}^{f_{0}}(W),
\end{aligned}
$$

where for $X=\pi$ or K,

$$
\begin{equation*}
\Pi_{X}^{f_{0}}(W)=\frac{\beta_{X} g_{f_{0} X X}^{2}}{16 \pi}\left[i+\frac{1}{\pi} \ln \frac{1-\beta_{X}}{1+\beta_{X}}\right] \tag{3}
\end{equation*}
$$

The factor β_{K} is real in the region $W \geq 2 M_{K}$ and becomes imaginary for $W<2 M_{K}$. The mass difference between $K^{ \pm}$and $K^{0}\left(\overline{K^{0}}\right)$ is included by using $\beta_{K}=\frac{1}{2}\left(\beta_{K^{ \pm}}+\beta_{K^{0}}\right)$.
\qquad

Angular dependence in $f_{2}(1270)$ region

Close to $\left|Y_{2}^{2}\right|^{2}$
Consistent with pure $\mathrm{J}=2$ and $\lambda=2$

But, mathematically the partial waves cannot be fully separated taking into account the interference between $\mathrm{J}=0$ and 2.
\square

Fit to $f_{2}(1270)$ line shape

Components:
f_{2} (1270) resonance
Smooth continuum:
Interfering component ($\mathrm{l}=2$)
No-interfering component ($\mathrm{I}=0$)

This is for consistency check:
Known mass and width of $f_{2}(1270)$ (PDG2006) are used.

The continuum and relative phase parameters etc. were floated.
\qquad

Trigger efficiency study

Correlation between the two triggers:
HiE (Etot_trg>1.15GeV), Clst4 (>=4 clusters each with >110MeV)
(The thresholds have been tuned.)

* -- data, dashed histogram - trigger simulator (tsim)

p_{t}-balance resolution and correction to efficiency

the pt-balance cut

Efficiency is affected by p_{t}-balance resolution.

The resolution in the experimental data is by $\sim 15 \%$ worse than the MC.

Correction factor: 5\%-10\%, depending on W and $\left|\cos \theta^{*}\right|$
\qquad

