Study of $\pi\pi$ production in two-photon collisions at Belle

S.Uehara (KEK)

1

on behalf of **The Belle Collaboration**

Photon2007, 9 July, 2007, Paris

Motivation of two-photon physics

Hadron production from two quasi-real photons

 $(|q^2| < 0.001 \text{GeV}^2, \text{ with no-tag condition})$ Exclusive processes with $W_{\gamma\gamma} = 0.6 - 4.5 \text{ GeV}$ at KEKB/Belle

Wide energy region --- Various physics aspects

can be studied simultaneously.

Light-quark resonances, Charmonia Perturbative /Non-perturbative QCD, Hadron production mechanism

Physics is almost the same, but gives independent information

Electromagnetic production as mesons: $\sigma(\pi^0\pi^0) << \sigma(\pi^+\pi^-)$ Resonances (I=0, J^{PC}=0⁺⁺) decaying via strong interaction: $\sigma(\pi^0\pi^0):\sigma(\pi^+\pi^-) = 1:2$ Test of QCD: $\sigma(\pi^0\pi^0)/\sigma(\pi^+\pi^-): \sim 0.03$ (LO) – 0.5 ("handbag") c.m.-energy (W) and angular dependences must also be examined.

KEKB Accelerator and Belle Detector

 Asymmetric e⁻ e⁺ collider 8 GeV e⁻ (HER) x 3.5 GeV e⁺ (LER) √s=10.58 GeV ⇔ Y(4S) Beam crossing angle: 22mrad

 Continuous injection

 Luminosity L_{max}=1.71x10³⁴ cm⁻²s⁻¹

 $\int Ldt \sim 710 \text{ fb}^{-1}$

High momentum/energy resolutions CDC+Solenoid, CsI Vertex measurement – Si strips Particle identification TOF, Si-aerogel, CDC-dE/dx, RPC for K_L/muon

Photon2007, 9 July, 2007, S.Uehara, Belle

Results of $\gamma\gamma \rightarrow \pi^+\pi^-$

Belle Collaboration

W = 0.8 – 1.5 GeV Phys. Rev. D 75, 051101(R) (2007) arXiv:0704.3538[hep-ex], to appear in J. Phys. Soc. Jpn. (2007)

W = 2.4 – 4.1 GeV Phys. Lett. B 615, 39 (2005)

 $f_0(980)$ in $\gamma\gamma \rightarrow \pi^+\pi^-$

 $f_0(980) = 85.9 \text{fb}^{-1}$ - is an ordinary qq meson?

- an exotic state?
- some special theory needed?

Its two-photon coupling is a crucial key.

Prediction of $\Gamma_{\gamma\gamma}$: uu, dd ---- 1.3 - 1.8 keV \overline{ss} ---- 0.3 - 0.5 keV KK molecule ---- 0.2 - 0.6 keV

 π/μ separation: by comparing energy deposit in the CsI calorimeter between data and MC

statistically significant peak.

Photon2007, 9 July, 2007, S.Uehara, Belle

Fit to the $f_0(980)$ line shape

New upper limit for $Br(\eta' \rightarrow \pi^+\pi^-)$

PLB 615, 39 (2005)

Two-photon measurements of $\Gamma_{\gamma\gamma}(\chi_{cJ})Br$ (eV) $\Gamma_{\gamma\gamma}Br(\chi_{c0} \rightarrow \pi^+\pi^-)$ 15.1 ± 2.1 ± 2.3 $\Gamma_{\gamma\gamma}Br(\chi_{c0} \rightarrow \mathbf{K}^+\mathbf{K}^-)$ 14.3 ± 1.6 ± 2.3 $\Gamma_{\gamma\gamma}Br(\chi_{c2} \rightarrow \pi^+\pi^-)$ 0.76 ± 0.14 ± 0.11 $\Gamma_{\gamma\gamma}Br(\chi_{c2} \rightarrow \mathbf{K}^+\mathbf{K}^-)$ 0.44 ± 0.76 ± 0.14

Preliminary results of $\gamma\gamma \rightarrow \pi^0\pi^0$

Selection of $\pi^0\pi^0$ candidates

Based on data with an integrated luminosity of 95 fb⁻¹ Only 4 photons are visible

- Triggered by Calorimeter triggers

- No reconstructed track with

 p_t >0.1GeV/c, dr<5cm, |dz|<5cm

- 2 or more photons OR 1 or more $\pi^0 s$

- Just 2 π^0 s with E(decay product photon)>70MeV, p_t>0.15GeV/c

- Transverse-momentum (p_t)-balance of the two π^0 's

 $|\Sigma \mathbf{p}_t| < 0.05 GeV/c$

- Satisfying a rough trigger condition at offline:

N_gamma=4 or Esum_lab>1.25 GeV in the ECL-trigger region, $17 < \theta_{lab} < 128.7 \text{deg}$

Trigger efficiency from the simulation

Raw-event distribution of $\pi^0\pi^0$

p_t-balance distributions and backgrounds

Detector acceptance not including trigger

Calculated from signal MC simulation and fitted by a smooth function

Around 11% at maximum, typically 5 %

Large angular dependence due to geometrical condition of the detector Overall efficiency = Acceptance * trigger efficiency

Photon2007, 9 July, 2007, S.Uehara, Belle

Invariant-mass resolution and Unfolding

W resolution --- ~ 1.4% ×W, almost independently of W (from signal MC) Apply Unfolding to the experimental W distribution (in each angle region) for the smearing effect in the W direction using an asymmetric Gaussian (1.3% higher side and 1.9 % lower side).

Cross sections of $\gamma\gamma \rightarrow \pi^0\pi^0$

Systematic-error sources

- -Trigger efficiency ---4% @ W > ~ 1.1 GeV (HiE) 5% - 30% @ W< ~1.1 GeV (Clst4)
- $-\pi^0$ reconstruction efficiency ---6%
- -Acceptance (dominated by pt-balance cut) - 3% 5%
- Background subtraction
 - 20% of the subtraction component 3% in High W where no subtraction applied.
 -Luminosity function
 - - 4% - 5%

Total

 55% - 10%
 @ W<~1.05GeV</td>

 ~9%
 @ 1.05GeV<W<~2.7GeV</td>

 10% - 11%
 @ W>~2.7GeV

Differential cross section (Angular dependence)

Photon2007, 9 July, 2007, S.Uehara, Belle

Resonant structures

Resonances:

Clearly seen: $f_0(980), f_2(1270), \sim 1.65 \text{ GeV}, \sim 1.95 \text{ GeV}$ Hints with a lower significance : $\sim 1.45 \text{ GeV}, \chi_{c0}, \chi_{c2}$

Cross section ratio $\sigma(\pi^0\pi^0)/\sigma(\pi^+\pi^-)$

Error bars are statistical only.

Systematic errors: About 10% at each measurement point, except $\pi^+\pi^-$ above the charmonium masses (~25%).

Charmonium region is omitted from the plot. The ratio is 0.3 - 0.4 at W>2.7 GeV

Conclusion of $\pi^+\pi^-$ measurement

- We measure the process $\gamma\gamma \rightarrow \pi^+\pi^-$ with 85.9 fb⁻¹ data.
- The differential cross sections are obtained in
 0.8 GeV < W < 1.5 GeV and |cos θ*|<0.6 in the γγ c.m. frame.
 (# We separately published before for the region 2.4 GeV<W<4.1GeV)
- We confirm small but statistically significant peak from $f_0(980)$.
- New upper limit for P and CP violating process $\eta' \rightarrow \pi^+\pi^-$ is obtained.

22

Summary for $\pi^0\pi^0$ measurement

- We measure the process $\gamma\gamma \rightarrow \pi^0\pi^0$ with 95fb⁻¹ data.
- Preliminary results of the differential cross sections are obtained in 0.6 GeV < W < 4.0 GeV and $|\cos \theta^*| < 0.8$ in the $\gamma\gamma$ c.m. frame.
- Several resonant structures are seen, including a statistically significant peak from $f_0(980)$.
- Behavior of the angular dependence (forward- and/or large-angle enhancements) changes drastically at around W= 2.0 GeV.
- The cross section ratio $\sigma(\pi^0\pi^0)/\sigma(\pi^+\pi^-)$ in 3 GeV region is obtained.

BACKUP slides

Measurements of two-photon processes at Belle

$$\begin{array}{lll} & \gamma\gamma \to \chi_{c2} \to \gamma J/\psi & \text{PLB 540, 33(2002)} \\ & \gamma\gamma \to (f_2'(1525)\text{etc.} \to) \mathrm{K}^+\mathrm{K}^- \ (1.4 - 2.4 \ \mathrm{GeV}) & \text{EPJC 32, 323 (2003)} \\ & \gamma\gamma \to (\chi_{c0}, \chi_{c2} \to) \pi^+\pi^-, \mathrm{K}^+\mathrm{K}^- \ (2.4 - 4.1 \ \mathrm{GeV}) & \text{PLB 615, 39 (2005)} \\ & \gamma\gamma \to (\eta_{\mathrm{c}} \to) \mathrm{p}\bar{\mathrm{p}} \ (2.025 - 4.0 \ \mathrm{GeV}) & \text{PLB 621, 41 (2005)} \\ & \gamma\gamma \to \chi_{c2}' \to \mathrm{D}\bar{\mathrm{D}} & \mathrm{PRL 96, 082003 (2006)} \\ & \gamma\gamma \to (f_0(980) \mathrm{etc.} \to) \pi^+\pi^- \ (0.8 - 1.5 \ \mathrm{GeV}) & \mathrm{PRD 75, 051101(R) (2007),} \\ & & \mathrm{arXiv:0704.3538[hep-ex], to appear in Jour. Phys. Soc. Jpn. (2007)} \\ & \gamma\gamma \to (\chi_{c0}, \chi_{c2} \to) \mathrm{K}^+\mathrm{K}^- \ (2.4 - 4.0 \ \mathrm{GeV}) & \mathrm{hep-ex/0609042v2, submitted to PLB} \\ & \gamma\gamma \to (\eta_{\mathrm{c}}, \chi_{c0}, \chi_{c2} \to) \pi^+\pi^-\pi^+\pi^-, \mathrm{K}^+\mathrm{K}^-\mathrm{K}^+\mathrm{K}^-\mathrm{K}^+\mathrm{K}^- \\ & & \mathrm{arXiv:0706.3955[hep-ex], submitted to EPJC} \\ & \gamma\gamma \to a_2'\mathrm{s} \to -\pi^+\pi^-\pi^0 \ (1.2 - 3.0 \ \mathrm{GeV}) & \mathrm{hep-ex/0610022} \\ & \gamma\gamma \to (\eta_{\mathrm{c}} \to) \Lambda\bar{\Lambda}, \Sigma^0 \overline{\Sigma^0} \ (2.3-4.0 \ \mathrm{GeV}) & \mathrm{hep-ex/0609048} \end{array}$$

Reactions at KEKB/Belle

Calculated with equivalent-photon approximation

Two-meson exclusive final states

C = + resonances: Peak structure in the invariant mass distribution
 Test of QCD: c.m.-energy (W) dependence and angular dependence in high energies
 General Analysis strategy
 Invariant-mass of hadron pair = W (c.m. energy of γγ)
 Quasi-real two-photon collisions with final state fully reconstructed

--- strict transverse momentum balance is required

(| $\Sigma \mathbf{p}_t$ | <50 - 200 MeV/c)

This gives efficient background rejection

Photon2007, 9 July, 2007, S.Uehara, Belle

Selection of $\pi^+\pi^-$ candidates

Based on data with an integrated luminosity of 85.9fb⁻¹

- Two charged tracks (oppositely charged)

with $p_t\!\!>\!\!0.3$ GeV/c, -0.47 $<\!\!\cos\theta_{lab}\!<\!\!+0.82$

- $|\Sigma p_t^*|$ (in e+e- c.m.s) < 0.1 GeV/c
- π/K , π/p separations

using TOF, Aerogel-Cherenkov and dE/dx

- Muon background subtraction

with fitting the energy-deposit distribution on ECL KLM (muon detector with iron filter) cannot be available in these low energies

Angular dependences at some energy points

Systematic structure near $|\cos \theta^*|=0.45-0.55$ could be due to a measurement bias

Photon2007, 9 July, 2007, S.Uehara, Belle

Fitting formula for $f_0(980)$

$$\sigma = \left| \frac{\sqrt{4.8\pi\beta_{\pi}}}{W} \mathcal{F}^{f_0} e^{i\varphi} + \sqrt{\sigma_0^{\mathrm{BG}}} \right|^2 + \sigma^{\mathrm{BG}} - \sigma_0^{\mathrm{BG}}, \quad (1)$$

where the factor 4.8 includes the fiducial angular acceptance $|\cos \theta^*| < 0.6$, $\beta_X = \sqrt{1 - \frac{4M_X^2}{W^2}}$ is the velocity of the particles X with mass M_X in the two-body final states, \mathcal{F}^{f_0} is the amplitude of the $f_0(980)$ meson, which interferes with the helicity-0-background amplitude $\sqrt{\sigma_0^{\text{BG}}}$ with relative phase φ , and σ^{BG} is the total background cross section. The amplitude \mathcal{F}^{f_0} can be written as

$$\mathcal{F}^{f_0} = \frac{g_{f_0\gamma\gamma}g_{f_0\pi\pi}}{16\pi} \cdot \frac{1}{D_{f_0}},\tag{2}$$

where g_{f_0XX} is related to the partial width of the $f_0(980)$ meson via $\Gamma_{XX}(f_0) = \frac{\beta_X g_{f_0XX}^2}{16\pi M_{f_0}}$. The factor D_{f_0} is given as follows [16]:

$$D_{f_0}(W) = M_{f_0}^2 - W^2 + \Re \Pi_{\pi}^{f_0}(M_{f_0}) - \Pi_{\pi}^{f_0}(W) + \Re \Pi_{K}^{f_0}(M_{f_0}) - \Pi_{K}^{f_0}(W),$$

where for $X = \pi$ or K,

$$\Pi_X^{f_0}(W) = \frac{\beta_X g_{f_0 X X}^2}{16\pi} \left[i + \frac{1}{\pi} \ln \frac{1 - \beta_X}{1 + \beta_X} \right].$$
(3)

The factor β_K is real in the region $W \geq 2M_K$ and becomes imaginary for $W < 2M_K$. The mass difference between K^{\pm} and K^0 ($\overline{K^0}$) is included by using $\beta_K = \frac{1}{2}(\beta_{K^{\pm}} + \beta_{K^0}).$

Angular dependence in $f_2(1270)$ region

Close to $|Y_2^2|^2$

Consistent with pure J=2 and λ =2

But, mathematically the partial waves cannot be fully separated taking into account the interference between J=0 and 2.

Fit to $f_2(1270)$ line shape

Components: f_2 (1270) resonance Smooth continuum: Interfering component (1=2) No-interfering component (I=0)

This is for consistency check: Known mass and width of $f_2(1270)$ (PDG2006) are used.

The continuum and relative phase parameters etc. were floated.

Trigger efficiency study

Correlation between the two triggers:

HiE (Etot_trg>1.15GeV), Clst4 (>=4 clusters each with >110MeV)

(The thresholds have been tuned.)

* -- data, dashed histogram – trigger simulator (tsim)

p_t-balance resolution and correction to efficiency

