

Exclusive reactions with photons A powerful probe of the hadronic structure

Photon 2007 - LA SORBONNE

B. Pire
CPhT, École Polytechnique

Exclusive reactions

Why exclusive reactions?

Which exclusive reactions?

Present and Future

The aim of this physics is

TO UNDERSTAND THE CONFINEMENT DYNAMICS

→ What is the proton made of? and HOW?
related and often easier: → What is a meson ...

We know that quarks and gluons are the basic fields A large scale Q^2 is necessary

To be sensitive to specific hadronic states properties either average over everything else → totally inclusive or select a specific channel → exclusive

Factorization of Hard Exclusive processes

• DIS: INCLUSIVE / Large vs Short distance

Stucture Function = Pert. Coef. Funct. \times Parton distributions

• DVCS : EXCLUSIVE $\gamma^* N \rightarrow \gamma N'$

Amplitude = Pert. Coef. Funct. × Generalized Parton Distributions

• $\gamma^* \gamma \to M_1 \ M_2$ near threshold

Amplitude = Pert. Coef. Funct. × Generalized Distribution Amplitude

Successes of Factorized framework

• Consistent picture in QCD

Evolution DGLAP and ERBL Equations

• Scaling, e.g.

handbag dominance \equiv (generalized) Bjorken scaling

When do we access the factorization regime?

• LEP2 data: EARLY SCALING

 Q^2 dependence of $\gamma^*\gamma \to \rho^+\rho^-$ and $\gamma^*\gamma \to \rho^0\rho^0$

Impact picture Representation

• t dependence of GPDs maps transverse position of quarks in proton.

Fourier transform GPD at zero skewedness $q(x,b_T)=(2\pi)^{-2}\int d^2\Delta e^{i\Delta.b}H(x,\xi=0,t)$

Generalize at $\xi \neq 0 \rightarrow$ Quantum femtophotography.

• W^2 dependence of $\gamma^*\gamma \to M_1\ M_2$ maps impact representation of hadronization.

Gauge invariance and exclusive processes

Gauge inv. may be in apparent conflict with Factorization
 1st example : dVCS on the photon

Figure 1: The Born order diagrams for $\gamma^* \gamma \rightarrow \gamma \gamma$

ALL diagrams needed for Gauge inv. Where is Factorization/handbag dominance? (cf. S. Friot's presentation)

Gauge invariance

2nd example: dVCS on the pion

Gauge inv. requires to add twist 3 part to the leading amplitude

$$T_{\mu\nu} = -\frac{1}{2P \cdot Q} \int dx \left(\frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right) \mathcal{T}_{\mu\nu},$$

$$\mathcal{T}_{\mu\nu} = H_1(x) \left(-2\xi P_{\mu} P_{\nu} - P_{\mu} Q_{\nu} - P_{\nu} Q_{\mu} + g_{\mu\nu} (P \cdot Q) - \frac{1}{2} P_{\mu} \Delta_{\nu}^T + \frac{1}{2} P_{\nu} \Delta_{\mu}^T \right) - H_3(x) \left(\xi P_{\nu} \Delta_{\mu}^T + 3\xi P_{\mu} \Delta_{\nu}^T + \Delta_{\mu}^T Q_{\nu} + \Delta_{\nu}^T Q_{\mu} \right) + \frac{\xi}{x} H_A(x) \left(3\xi P_{\mu} \Delta_{\nu}^T - \xi P_{\nu} \Delta_{\mu}^T - \Delta_{\mu}^T Q_{\nu} + \Delta_{\nu}^T Q_{\mu} \right).$$

Present and Future

• Nice results from BELLE, HERA, HERMES, JLAB ...

→In this session

- future EXPERIMENTAL POSSIBILITIES
 - → medium energy AND large luminosities!

super BELLE , Jlab 6 GeV ightarrow 12 GeV

- → Very large energy?
- ILC , PLC + Ultraperipheral collisions at LHC
 - → Many related presentations in other sessions Have a nice session!