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Exclusive reactions

Why exclusive reactions ?

Which exclusive reactions ?

Present and Future

B.Pire, CPhT, Polytechnique PHOTON-2007 02/10



The aim of this physics is
TO UNDERSTAND THE CONFINEMENT DYNAMICS

→ What is the proton made of ? and HOW?

related and often easier : → What is a meson ...

We know that quarks and gluons are the basic fields

A large scale Q2 is necessary

To be sensitive to specific hadronic states properties

either average over everything else → totally inclusive

or select a specific channel → exclusive
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Factorization of Hard Exclusive processes

• DIS : INCLUSIVE / Large vs Short distance

Stucture Function =Pert. Coef. Funct. × Parton distributions

• DVCS : EXCLUSIVE γ∗ N → γ N ′

Amplitude =Pert. Coef. Funct. × Generalized Parton Distributions

• γ∗γ → M1 M2 near threshold

Amplitude =Pert. Coef. Funct. × Generalized Distribution Amplitude
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Successes of Factorized framework

• Consistent picture in QCD

Evolution DGLAP and ERBL Equations

• Scaling, e.g.

handbag dominance ≡ (generalized) Bjorken scaling
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When do we access the factorization regime ?

• LEP2 data : EARLY SCALING
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Q2 dependence of γ∗γ → ρ+ρ− and γ∗γ → ρ0ρ0
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Impact picture Representation

• t dependence of GPDs maps transverse position of quarks in proton.

Fourier transform GPD at zero skewedness q(x, bT) = (2π)−2
∫

d2∆ei∆.bH(x, ξ = 0, t)

Generalize at ξ '= 0 → Quantum femtophotography.

• W2 dependence of γ∗γ → M1 M2 maps impact representation of

hadronization.
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Gauge invariance and exclusive processes

• Gauge inv. may be in apparent conflict with Factorization

1st example : dVCS on the photon

1 Introduction

The photon is a fascinating object for QCD studies. Among its many aspects, its parton distributions
have been the subject of much work since the seminal paper by Witten [1]. The mixing of the non
local electromagnetic operator Fµν(z)Fµν(0) with the ψ̄(z)ψ(0) quark-antiquark one, on the light-
cone, yields quite unique features in the analysis of the imaginary part of the forward γ∗γ → γ∗γ
amplitude. A renormalization group analysis allows then to define a parton distribution in the photon
which factorizes in the structure functions measured in inclusive deep inelastic scattering (DIS). The
pointlike nature of the photon enables one to fully determine its leading expression in lnQ2, through
a Born order calculation in αem and an inhomogeneous QCD evolution equation which can be solved
in the leading logarithmic approximation without assuming an additional initial condition.

In this work we uncover an analogous structure in the case of the generalization of the Bjorken
scaling regime of exclusive hard reactions such as the amplitude for deeply virtual Compton scattering
(DVCS), γ∗γ → γγ. At first sight, this looks unrealistic since QED gauge invariance demands that
all diagrams contributing to the DVCS amplitude be considered and not all of them have a topology
compatible with a partonic interpretation based on the QCD collinear factorization of the scatter-
ing amplitude. We show nevertheless how to define the anomalous generalized parton distributions
(GPDs) in the photon. It can serve as a basis for a reliable perturbative calculation of a GPD, which
is of utmost importance to test various features of GPDs such as sum rules, crossing properties [2]
with generalized distribution amplitudes [3] and positivity limits [4].

Moreover, the parton distributions in the photon have turned out to be of experimental importance
in a number of accessible processes, both in e+e− annihilation and in photoproduction. In the same
spirit and even if DVCS on the photon seems to be more a subject for an academic study than for a
phenomenological analysis of forthcoming data, it may turn out that other exclusive reactions with
photon GPDs (e.g. γ∗γ → ργ) are feasible. Let us stress, nevertheless, that the phenomenological use
of the photon GPDs requires to include non-pointlike, hadronic contributions, which effectively goes
beyond the leading logarithmic approximation considered below.

2 The DVCS process

Deeply virtual Compton scattering on a photon target

γ∗(q)γ(p1) → γ(q′)γ(p2) (1)

involves, at leading order in αem, and zeroth order in αS the six Feynman diagrams of Fig. 1 with
quarks in the loop. Our aim in this section is to calculate this amplitude and present it in the form of
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Figure 1: The Born order diagrams for γ∗ γ → γ γ

an integral over the quark momentum fraction x. Since we found this calculation rather instructive,
we shall describe with some details how we perform it on the example of the box diagram of Fig. 1A

1

ALL diagrams needed for Gauge inv. Where is
Factorization/handbag dominance ? (cf. S. Friot’s presentation)
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Gauge invariance

2nd example : dVCS on the pion

Gauge inv. requires to add twist 3 part to the leading amplitude
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Fig.1 The DVCS diagrams ( notations: k = xP −∆/2,
k′ = xP + ∆/2, m = x1P − ∆/2 and l = x2P + ∆/2).
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its integral in x, is considered. Although this is required
by the conservation of local vector current, this effect is
proportional to t and is therefore beyond the scope of our
approximation. At the same time, this is also required by
T-invariance [10]. It is therefore natural, that symmetry
of H (c.f. [11,4]), resulting also from T-invariance,

H3(x, ξ) = −H3(x,−ξ)

is relevant. Calculating the integral in x and implying the
polynomiality condition [2], one gets a function which is
independent on ξ, and hence vanishes since the only odd
constant is zero. A similar argument is also applicable to
the function HA, so that :

∫

dxH3(x) = 0 ,

∫

dxHA(x) = 0. (19)

Acting i∂̂ on (11) and γ on (12) from left or right side,
the QCD equations of motion yield the following integral
relations for structure functions

∫

dy
(

B(A)(x, y) − D(S)(x, y) + δ(x − y)HT
A(y)

)

=

−ξH3(x) −
1

2
H1(x) − xHA(x),

∫

dy
(

B(S)(x, y) − δ(x − y)HT
1 (y) − D(A)(x, y)

)

=

xH3(x) + ξHA(x), (20)

where symmetrical and anti-symmetrical functions are
defined as,

B(S,A)(x, y) =
1

2
(B(x, y) ± B(y, x)) . (21)

Note again the important difference with DIS, where
the axial correlator is symmetric and the vector one is
antisymmetric [8]. The latter property is based on T-
invariance, just like the symmetry properties in ξ dis-
cussed above. To see the relation between x ↔ y and
ξ symmetry, it is instructive to write the general T-
invariance relations :

B(x, y, ξ) = B(y, x,−ξ), D(x, y, ξ) = −D(y, x,−ξ); (22)

So the ”unnatural” symmetry in x, y results from the an-
tisymmetrical in ξ part, clearly absent in the forward
case. It is worthy to note that a similar unnatural
symmetry may appear due to the final state interaction
phases in the case of T-odd fragmentation functions [12].

We can thus write the DVCS amplitude in a gauge
invariant manner. Let us first write the contribution from
the pure quark amplitude :

T (a)
µν =

∫

dx
1

(xP + Q)2
(

H1(x)Sν(xP+Q)µP + H3(x)Sν(xP+Q)µ∆T +

HA(x)εα∆T Pnεν(xP+Q)µα

)

+ (µ → ν, Q → −Q) , (23)

where the following notations were introduced

Sµ1µ2µ3µ4
= gµ1µ2

gµ3µ4
+ gµ1µ4

gµ2µ3
− gµ1µ3

gµ2µ4
,

Q = (q + q′)/2

As a corollary, the contribution of the amplitude cor-
responding to the one-gluon exchange diagram, has the
form

T (b)
µν =

1

4

∫

dx1dx2
1

(x1P + Q)2(x2P + Q)2
(

(

B(x1, x2) − δ(x1 − x2)H
T
1 (x2)

)

tr

(

γν(x2P̂ + Q̂)∆̂T (x1P̂ + Q̂)γµP̂

)

+

i

(

D(x1, x2) − δ(x1 − x2)H
T
A(x2)

)

εα∆T Pn

tr

(

γν(x2P̂ + Q̂)γα(x1P̂ + Q̂)γµP̂γ5

)

)

+ ”crossed”. (24)

Calculating all traces in (24), using the following obvious
identities

±(P · Q)(x1 + x2) + Q2

(x1P ± Q)2(x2P ± Q)2
=

1

2

(

1

(x1P ± Q)2
+

1

(x2P ± Q)2

)

,

±(P · Q)(x1 − x2)

(x1P ± Q)2(x2P ± Q)2
=

1

2

(

1

(x2P ± Q)2
−

1

(x1P ± Q)2

)

,

and the equations of motion (20) in terms of symmetric
and anti-symmetric functions, we add contributions of
(23) and (24), taking into account the crossed diagrams.
The gauge invariant expression of the DVCS amplitude
is thus

Tµν = −
1

2P · Q

∫

dx

(

1

x − ξ + iε
+

1

x + ξ − iε

)

Tµν ,

(25)

where

Tµν = H1(x)

(

−2ξPµPν − PµQν − PνQµ+

gµν(P · Q) −
1

2
Pµ∆T

ν +
1

2
Pν∆T

µ

)

−

H3(x)

(

ξPν∆T
µ + 3ξPµ∆T

ν + ∆T
µQν + ∆T

ν Qµ

)

+

ξ

x
HA(x)

(

3ξPµ∆T
ν − ξPν∆T

µ − ∆T
µQν + ∆T

ν Qµ

)

.
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Present and Future

• Nice results from BELLE, HERA, HERMES, JLAB ...

→In this session

• future EXPERIMENTAL POSSIBILITIES

→ medium energy AND large luminosities !

super BELLE , Jlab 6 GeV → 12 GeV

→ Very large energy ?

ILC , PLC + Ultraperipheral collisions at LHC

→ Many related presentations in other sessions

Have a nice session !
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