Production of Exclusive States Involving Photons at CDF

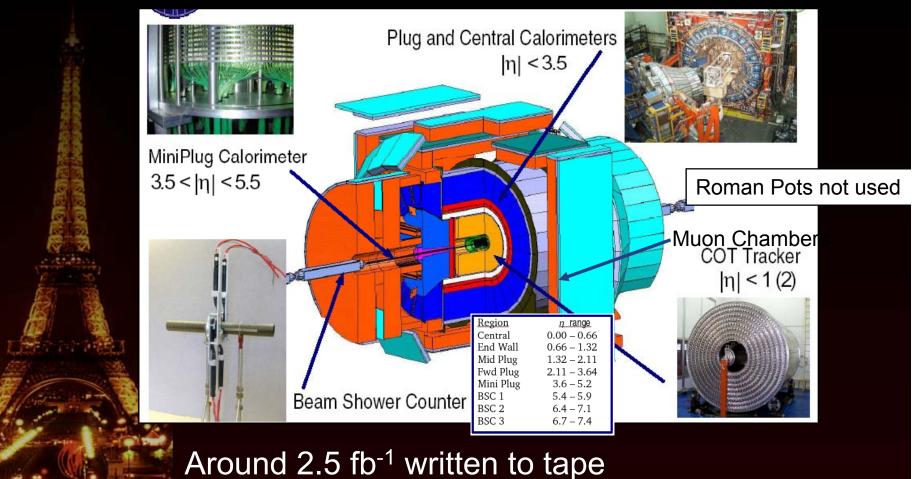
James L. Pinfold University of Alberta PHOTON 2007

René Magritte's - Empire of Light

Tevatron Performance

pp collisions @ $\sqrt{s} = 1.96 \ TeV$ $\mathscr{L}_{inst} = 20 \text{ to } 160 \times 10^{30} \text{ cm}^2 \text{ s}^{-1}$ $\overline{\Delta t}_{bunch} = 580 \text{ ns}$ $\sigma_{inel} = 60 \text{ mb}$

 $\overline{n} = \sigma_{inel} \mathscr{L}_{inst} \overline{\Delta t}_{bunch}$ ~ 1 to 6 interactions per crossing

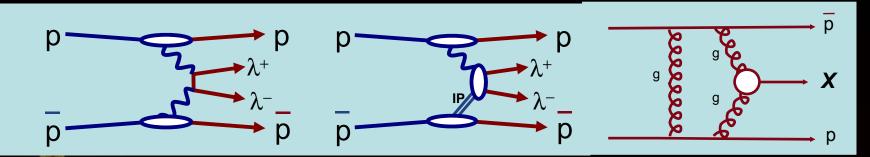

very important when searching for exclusive states without proton taggers

Collider Run II - design Goal 8 fb⁻¹ by end FY09 Approximately 3 fb⁻¹ delivered so far

Tevatron

CDF - Performance

Anticipate around 3.5 fb⁻¹ to tape by May 2008


Photon 2007 Paris

CDF

lames

Pinfold

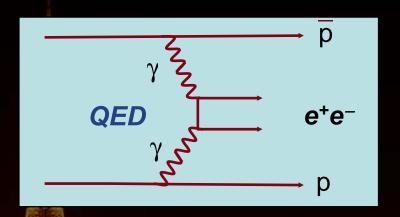
Motivation: for Exclusive Studies

Motivations to study exclusive lepton pair production:

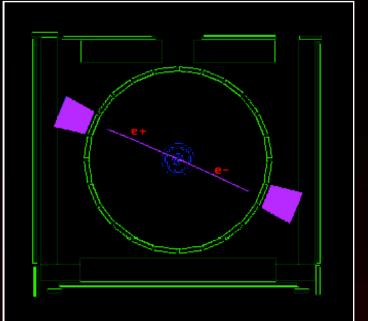
Potential to improve luminosity measurements at LHC since the cross section is known to better than ~0.1%

Can be used as a control sample for exclusive processes whose cross-sections are not well predicted ($\gamma\gamma$, χ_c , Higgs, ...)

Can be used to calibrate forward proton spectrometers (FP420) at LHC (very important in the search for new physics and Higgs in exclusive channels)


Main motivation to study exclusive $pp \rightarrow \gamma \gamma$

This process is a "standard candle" for exclusive Higgs production


Motivation

Exclusive e⁺e⁻ Production (1)

- Central state produced via $QED \gamma\gamma \rightarrow e^+e^-$
 - Protons do not dissociate

- Only e^+e^- are produced \rightarrow nothing else
- Process has never been observed before in hadron-hadron collisions

Exclusive e⁺e⁻

Exclusive e⁺e⁻ Production (2)

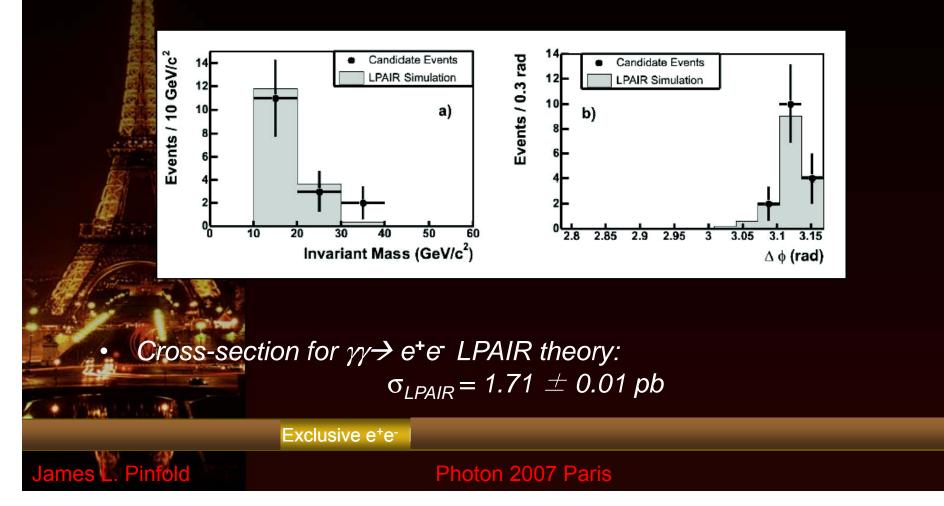
- Integrated luminosity → 532 ± 32 pb⁻¹
 DIFF_DIPHOTON Trigger:
 - 2 EM clusters with $E_T > 4$ GeV plus a veto on BSC 1 (E+W)

Exclusive e⁺e⁻ *events* are selected by:

- Reconstructing the e⁺e⁻
- Requiring that there is no other activity in $|\eta| < 7.4$
- Photons have $E_T > 5 \text{ GeV}$
- 16 e⁺e⁻ candidates selected

Backgrounds 1.9 \pm 0.3 events:

- *dijet fake (0.0 +0.1 -0.0)*
- cosmic (neglible)
- inclusive distribution (0.3+/-0.1)


dissociation (1.6 \pm 0.3) (these are also $\gamma\gamma \rightarrow e^+e^-$ where one (or both) proton(s) dissociate)

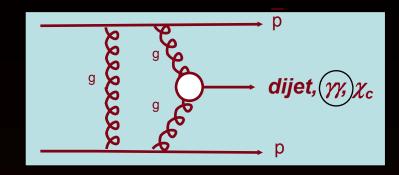
Exclusive e⁺e⁻ Production (3)

 Kinematics of 16 event candidate sample match the predictions of the LPAIR signal MC (J.Vermaseren. Nucl. Phys., B229 347-371, 1983) - e⁺e⁻ are collinear in φ and have matching E_T

Exclusive e⁺e⁻ Production (4)

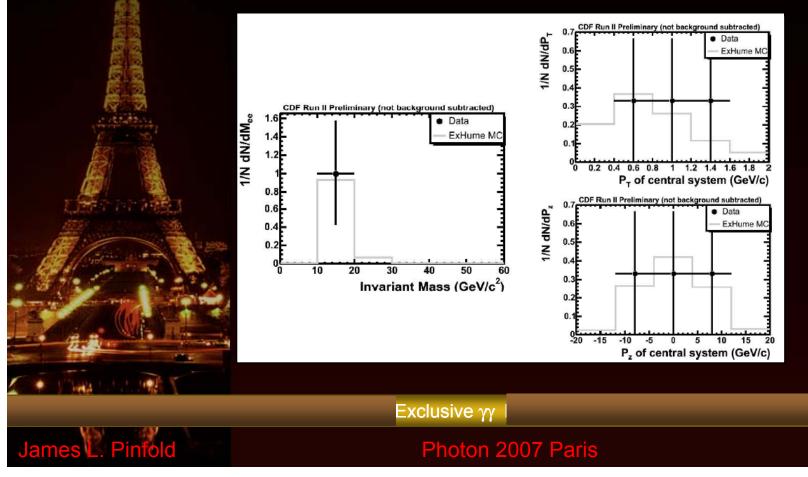
$$\sigma_{MEASURED} = 1.6 + 0.5 - 0.3$$
 (stat) ± 0.3 (sys) pb

- Agrees with LPAIR theory: $\sigma_{LPAIR} = 1.71 \pm 0.01 \text{ pb}$
- Probability of $1.9 \rightarrow \geq 16 = 1.3 \times 10^9$ corresponds to 5.5σ "observation"
- This is the first observation of exclusive two-photon interactions in hadron-hadron collisions


The LHC can rely on measuring such processes for luminosity measurement, etc.

Exclusive e⁺e⁻

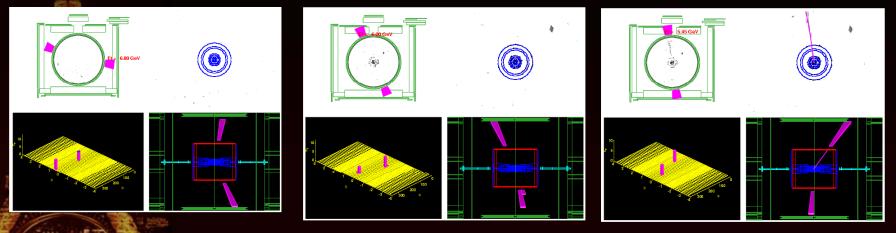
Exclusive $\gamma\gamma$ Study (1)


Exclusive γγ events:

- selected in the same way as e⁺e⁻ (except tracking)
 - agreement of exclusive e⁺e⁻ cross section gives confidence in analysis methodology

Exclusive γγ

Exclusive $\gamma\gamma$ Study (2)

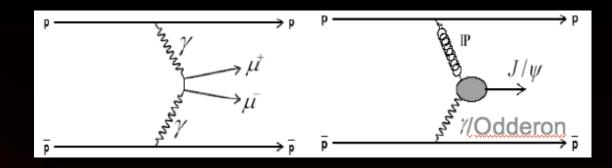

- Good agreement on kinematics with ExHume MC (Monk & Pilkington. hep-ph/0502077)
- **1**⁺³₋₁ events predicted from ExHuME MC. Two candidates are almost certainly $\gamma\gamma$ but the $\pi^0\pi^0/\eta\eta$ hypotheses cannot be excluded

Exclusive $\gamma\gamma$ Candidates

3 candidate events are found in 532 pb⁻¹ of Run II data.

- Selected in the same way as $\gamma\gamma \rightarrow e^+e^-$ (except tracks)agreement of $\gamma\gamma \rightarrow e^+e^-$ cross section gives confidence in analysis methodology
- The an upper limit of the cross-section pp--> $p \gamma \gamma p$ is set at 410 fb with 95% confidence level

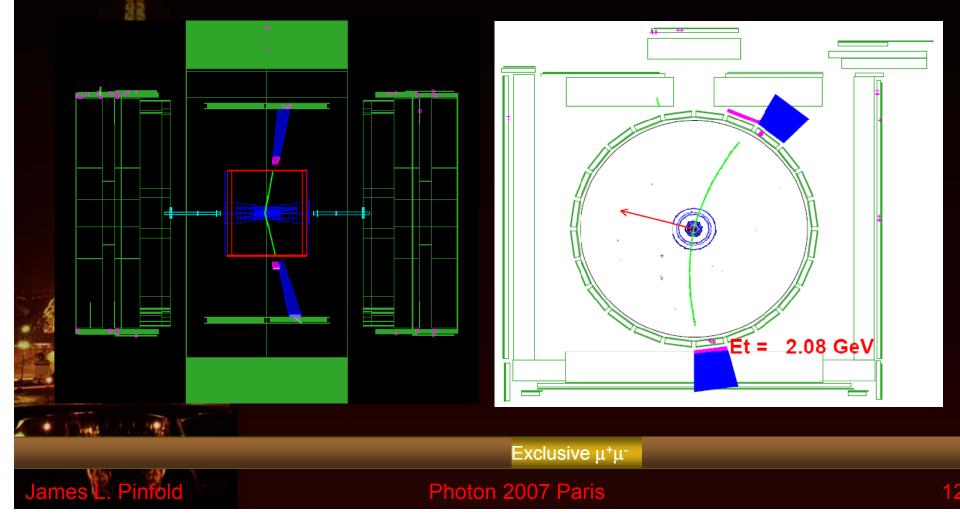
Exclusive $\gamma\gamma$ Production in Hadron-Hadron Collisions


T. Aaltonen,²³ A. Abulencia,²⁴ J. Adelman,¹³ T. Affolder,¹⁰ T. Akimoto,⁵⁵ M.G. Albrow,¹⁷ S. Amerio,⁴³ D. Amidei,³⁵ A. Anastassov,⁵² K. Anikeev,¹⁷ A. Annovi,¹⁹ J. Antos,¹⁴ M. Aoki,⁵⁵ G. Apollinari,¹⁷ T. Arisawa,⁵⁷

We have found additional candidates in later data with dedicated di- γ trigger

Exclusive $\gamma\gamma$

Exclusive $\mu^+\mu^-$ Production (1)


- Trigger (DIFF_CHIC_CMU1.5_PT1.5_TRK):
 - BSC Gap, east & west
 - *muon* + track ($p_t > 1.3$; $|\eta| < 1.2$)
 - 2.7 < M(muon + track) < 4.0 GeV
 - No other activity in the events (to an $|\eta|$ of 7.4)
- The existing sample corresponds to a lumi 1298 pb⁻¹
- Also higher mass muons have just been stripped, (2 trigs with $p_t(\mu) > 4$ GeV, 2 muons, no $\Delta \phi$ requirement).
 - Should be very efficient for dimuons, with M > ~9 GeV, covering the Upsilon region and above.

Exclusive µ⁺µ⁻

Exclusive $\mu^+\mu^-$ Production (2)

Example exclusive $\mu^{+}\mu^{-}$ event: Run 199559, Event 13120174

Exclusive $\mu^+\mu^-$ Production (3)

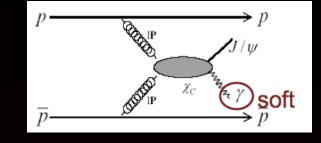
Offline cuts

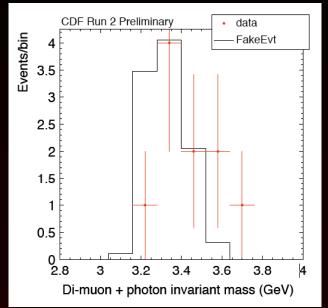
- Loose quality cuts
- Cosmic ray cuts (abs (delta_TOF) < 3 ns)
- Exclusivity cuts (same as for the e⁺e⁻ paper)

Analysis of cuts is underway

- Acceptance
- Efficiency
- Effective luminosity

Exclusive µ⁺µ⁻


Exclusive µ⁺µ⁻ Candidates


Many candidate events have been found (CDF-II Preliminary)

offline Lumi $\approx 1298 \times 10^3 nb^{-1}$ 0h+0i data, Dec.2004 - Jan.2007 Number of Events mass 50 311 Entries 3.234 Mean 0.2651 RMS 40 30 20 10 2.8 3.8 3.2 3.6 3 3.4 [μ+μ-) (GeV/c²) Exclusive μ⁺μ⁻ Photon 2007 Paris James L. Pinfold

Exclusive χ_c Production

- Similar selection as $\mu^+\mu^-$ search with additional single isolated EM show requirement
 - 10 candidates in 93 pb⁻¹ of data
 - Many more candidates with new trigger
 - New ChicMC (James Stirling)
- ExAnalysis in the doldrums after Angela Wyatt left for industry
- It is just now being actively worked on...watch this space
 Problems is understanding low
 - energy photon background

Candidate events (many more with new trigger but NB)

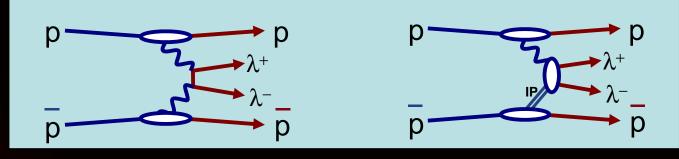
Exclusive χ_c

Conclusion

- The paper on the observation of exclusive $p-\overline{p} \rightarrow p + e^+e^- + \overline{p}$ production has been published in PRL (March 2007)
 - **Studies continue with new low E_T di-photon trigger**
- The study of exclusive $p-\overline{p} \rightarrow p + \gamma\gamma + \overline{p}$ production has just been submitted to PRL (July 2007)

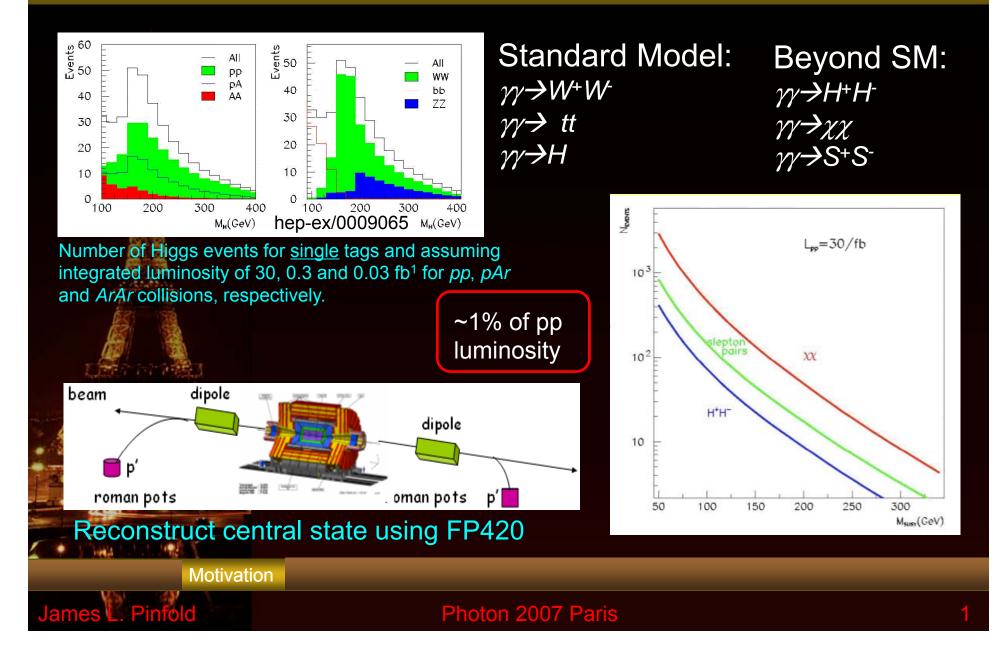
Studies continue with a new low E_T di-photon trigger

- The study of $p-\overline{p} \rightarrow p + \mu^+\mu^- + p, J/\Psi, J/\Psi', Upsilon, is underway$
- The study of exclusive $p \overline{p} \rightarrow p + \gamma \gamma + \overline{p}$ production is restarted
- Implications for the LHC
 - Use of $\gamma \gamma \rightarrow \mu^+ \mu^-$ /e⁺e⁻ as a luminosity monitor
 - Study of $\gamma\gamma \rightarrow \mu^+\mu^-$ as a calibration for FP420 is underway
 - The process $p \overline{p} \rightarrow \gamma \gamma / \chi_c$ is a standard candle for the exclusive Higgs
 - We are understanding how to use the LHC as a $\gamma\gamma$ and a γ -p collider



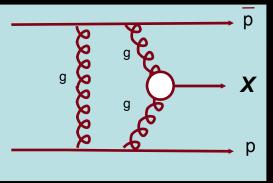
Extra Slides

Motivation: for Exclusive Studies (1)


- We are looking at *exclusive* channels to study:
 - EHC as a $\gamma\gamma$ collider exclusive production models for new and SM physics
 - Measurement of luminosity at the LHC &
 - Calibration of forward detectors (FP420) using $\gamma\gamma \rightarrow l^+l^-$
 - LHC as a γp collider higher energy reach & luminosity yield than for \bigcirc case
 - Experimental techniques to select exclusive events at the LHC
 - Advantages: reconstruct mass of central state (if protons tagged)

Related measurements:	In Heavy Ion Collisions: A. Belkacem et al., Phys. Rev. A C. Vane et al., Phys. Rev. A 50, 2 R. Baur et al., Phys. Lett. B 332, J. Adams et al., Phys. Rev. C 70,
In pp Collisions: D. Antreasyan et al., CERN-EP/80-82 (1980).	
In ep Collisions:	
Motivation	

Photon 2007 Paris


56, 2806 (1997); 313 (1997); 471 (1994); 031902 (2004).

Motivation: for Exclusive Studies (2)

Motivation: for Exclusive Studies (3)

• Exclusive Diffraction:

where X has
$$J^{PC} = 0^{++}$$

Two significant advantages over inclusive case:

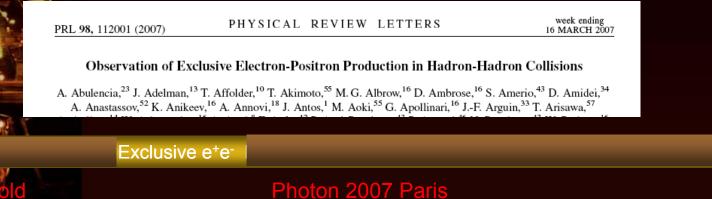
- mass of **X** can be determined from outgoing protons
- 'measures' the quantum numbers of X
- Exclusive channels we are looking at involve photons:
 - $\sim \gamma\gamma$ very 'clean' signature, but low cross section

This channel is a Standard Candle for exclusive DPE Higgs prod.

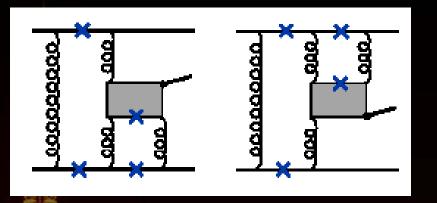
(Calculations of V.Khoze et al., show that pomeron-pomeron cross-sections for Higgs production are a few times larger than for the $\gamma\gamma$ case)

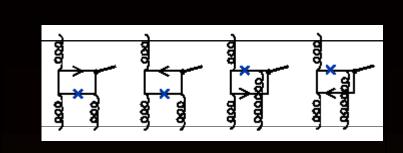
Motivation

Exclusive e⁺e⁻ Study Results


- 4 backgrounds are considered:
 - Jet Fakes:
 - Cosmics:
 - Inclusive (QCD) events:
 - Dissociation events:
- Efficiency
 - Electron ID:
 - Cosmic Rejection:
 - Final State Radiation:
 - Exclusive Cuts:

negligible 0.3 ± 0.1 events 1.6 ± 0.3 events


0.0^{+0.1}-0.0 events


 $\begin{array}{c} (26 \pm 3) \ \% \\ (93 \pm 3) \ \% \\ (79 \pm 5) \ \% \\ 8.6 \ \% \end{array}$

 $\sigma_{measured} = 1.6(stat) \pm 0.3(sys)pb$ corresponds to 5.5 σ observation" Agrees with LPAIR theory: $\sigma_{LPAIR} = 1.71 \pm 0.01 \ pb$

The Odderon

- The color neutral gluon systems, exchanged at high energy scattering processes, can be classified wrt their C parity. The most important one is C-even system with quantum numbers of vacuum i.e. the pomeron.
- In perturbative QCD the lowest order prototype of the pomeron is the color neutral system of two gluons.
 - The odderon is the C-odd partner of the pomeron the hard odderon skeleton consists of three gluons in a color neutral state.
- One would naively expect a suppression by a power of the coupling constant s for the additional gluon). It is not clear, however, why the contribution of the odderon is so small that it has not been definitely observed by any experiment.

