Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions with STAR

RHIC

- AuAu
 - $\sqrt{s_{NN}}$ = 19.6, 62.4, 130, 200 GeV
- CuCu
 - $\sqrt{s_{NN}}$ = 62.4, 200 GeV
- dAu
 - $\sqrt{s_{NN}} = 200 \text{ GeV}$
- polarized pp
 - $\sqrt{s_{NN}}$ = 200, 410 GeV

Ultraperipheral Collisions

- Nuclei miss each other geometrically
 - $b > R_1 + R_2$
 - No nucleon-nucleon collisions
- Strong electromagnetic fields (~ Z²) act for very short time
- Photon(s) exchanged
 - Nuclear Coulomb excitation
 - e⁺e⁻ pair or meson pair production
 - vector meson production

Photoproduction of vector mesons

- Photon flux ~ Z²
- Photon emitted by nucleus fluctuates to virtual qq pair

- qq pair scatters from nucleus
- real vector meson produced
 - ◆ coherence condition requires p_T < h/2R_A ~150 MeV
- Additional (independent) photons may excite nuclei > neutron emission

$$\sigma = \int d^2b \left(P(b)_{\rho} P(b)_{\text{nuclear excitation}} P(b)_{\text{no hadronic interaction}} \right)$$

STAR Triggers

- Topology (2-prong)
 - coincidence in North/South CTB quadrants
 - Events with hits Top/Bottom are vetoed
 - Low multiplicity
- Minimum Bias
 - Coincident neutrons in ZDCs
 - Low multiplicity
- Multi-prong
 - Coincident neutrons in ZDCs
 - Low multiplicity
 - BBC veto
- J/psi
 - Coincident neutrons in ZDCs
 - Low multiplicity
 - High towers in non-neighboring BEMC sectors

Sensitive only to events with nuclear excitation

Zero Degree Calorimeters

Run II Au-Au minimum bias sample

- Acceptance ~ 100%, sensitive to single neutrons
- Can experimentally select different excited states of produced vector mesons (1n, 2n,...)

Data Selection

- 2 tracks
 - Opposite charge
 - common vertex
 - back-to-back in transverse plane
 - Low total p_T
- Backgrounds
 - Cosmic rays
 - Beam-gas interactions
 - Hadronic interactions

Can be reduced with ZDC requirement, cut around y = 0

Can be reduced with multiplicity, vertex cuts

Tracks in TPC for typical UPC event

Can be reduced with

<u>Creighton</u>

multiplicity, p_T cuts

PHOTON 2007

July 9-13

Rho Yield from Run II (200 GeV Au-Au)

- Mass distribution fit with
 - Breit-Wigner function for the signal
 - Söding interference term for direct π⁺π⁻ production
 - Second order polynomial to describe background
 - Background estimated with like sign pairs

$$rac{d\sigma}{dM_{\pi\pi}} = \left|Arac{\sqrt{M_{\pi\pi}M_{
ho}\Gamma_{
ho}}}{M_{\pi\pi}^2-M_{
ho}^2+iM_{
ho}\Gamma_{
ho}} + B
ight|^2 + f_{PS}$$

A: amplitude for ρ^0

B: amplitude for direct $\pi^+\pi^-$

Min Bias dataset

 Approximately 16,000 candidates in topology and min-bias samples combined

Direct Pion Production

Fit to invariant mass

$$rac{d\sigma}{dM_{\pi\pi}} = \left|Arac{\sqrt{M_{\pi\pi}M_{
ho}\Gamma_{
ho}}}{M_{\pi\pi}^2-M_{
ho}^2+iM_{
ho}\Gamma_{
ho}} + B
ight|^2 + f_{PS}$$

- Ratio of B/A is varied in fit ->
 provides measure of non-resonant
 to resonant production
 - 200 GeV AuAu:
 |B/A| = 0.84 ± 0.11 GeV -1/2
 - in agreement with STAR results at 130 GeV: |B/A| = 0.81 ± 0.28 GeV -1/2
 - No angular dependence or rapidity dependence → in agreement with ZEUS measurements

Model predictions for ρ cross section

- Klein, Nystrand: vector dominance model (VDM) & classical mechanical approach for scattering, based on γp→ρp experiments results
 - PRC 60 (1999) 014903
- Frankfurt, Strikman, Zhalov: generalized vector dominance model + Gribov-Glauber approach
 - PRC 67 (2003) 034901
- Goncalves, Machado: QCD dipole approach (nuclear effects and parton saturation phenomenon)
 - Eur.Phys.J. C29 (2003) 271-275

ρ^0 production cross section (200 GeV AuAu)

Events with mutual excitation

Total production cross section Scaled using $\sigma(0n,0n)/\sigma(xn,xn)$ from topology sample

Total Cross Section Comparison for Coherent Interactions

Normalized to 7.2 b hadronic cross section

	STAR √s=130GeV (PRL 89,	STAR √s=200GeV	Nystrand & Klein	Goncalves, Machado	Frankfurt, et al
	(PRL 89, 027302 (2002))		200 GeV	200 GeV	200 GeV
σ _{xnxn} (mb)	26.2 ± 1.8 ± 5.8	30.26 ± 1.1 ± 6.35			
σ _{total} (mb)	410 ± 190 ± 100	509.2 ± 34.5 ± 106.9	590	876	934
		1			

Extrapolated to full rapidity using distribution of KS, FSZ

Compare Coherent and Incoherent Production

- Extend p_T range for measurement of ρ⁰ production
- Fit function:

$$\frac{d\sigma}{dt} = a * \exp(-b * t) + c * \exp(-d * t)$$

To the p_T^2 range: (0.002,0.3) GeV²

- Incoherent production
 - ◆ d = 8.8 ±1.0 GeV⁻²— access to the nucleon form factor
- Coherent production
 - ♦ b = 388.4 ±24.8 GeV⁻² access to nuclear form factor
- $\sigma(\text{incoh})/\sigma(\text{coh}) \sim 0.29 \pm 0.03$

Spin Density Matrix Elements

- Measure decay angular distribution in rest frame of ρ^0
 - determine 3 of the 15 spin density matrix elements (SDME)
- Fit function: K. Schilling and G. Wolf, Nucl. Phys. B61, 381 (1973)

$$\frac{1}{\sigma}\frac{d\sigma}{dcos\Theta_{h}d\Phi_{h}} = \frac{3}{4\pi}\left[\frac{1}{2}(1-r_{00}^{04}) + \frac{1}{2}(3r_{00}^{04}-1)cos^{2}\Theta_{h} - \sqrt{2}\Re e[r_{10}^{04}]sin2\Theta_{h}cos\Phi_{h} - r_{1-1}^{04}sin^{2}\Theta_{h}cos2\Phi_{h}\right] \tag{1}$$

- Θ : polar angle between ion and direction of π +
- Φ: azimuthal angle between decay plane and production plane
- r_{00}^{04} represents probability ρ has helicity 0
- r_{1-1}^{04} related to the level of interference helicity non flip & double flip
- $\Re e[r_{10}^{04}]$ related to the level of interference helicity non flip & single flip
- s-channel helicity conservation (SCHC)
 - vector meson retains helicity of photon
 - all 3 SDMEs are predicted to be ~ zero

Measured Matrix Elements

Parameter	STAR	ZEUS	
r_{00}^{04}	$-0.03 \pm 0.03 \pm 0.06$	0.01 ± 0.03	
$\Re e[r_{10}^{04}]$	$0.04 \pm 0.02 \pm 0.03$	0.01 ± 0.02	
r_{1-1}^{04}	-0.01 ± 0.03 ± 0.05	-0.01 ± 0.02	

consistent with s-channel helicity conservation

Interference

 Can't distinguish between emitter and target

→Interference!

- ρ has negative parity
 →amplitudes subtract
- At mid-rapidity

$$|A_1 + A_2|^2 = 2 |A_1|^2 [1 - \cos(\mathbf{p} \cdot \mathbf{b})]$$

 Expect reduction in cross section for p_T < h/

Expected signal

S. Klein and J. Nystrand, Phys. Rev. Lett. 84(2000)2330

Measuring the Interference

- Fit function: $\frac{dN}{dt} = Ae^{-kt} (1 + c[R(t) 1])$
- R parametrizes effect of interference
 - Based on Monte Carlo
 - R = (MC including interference)/(MC w/o interference)
- Fit parameter c measures extent of interference
 - $c = 1 \rightarrow expected interference$
 - \bullet c = 0 \rightarrow no interference
- Two samples: topology and minbias
 - Differ in median impact parameter
 - topology ~ 46 fm
 - minbias ~ 16 fm

Measuring the Interference B. Haag, UC-Davis

Minbias 0.1<y<0.5

С	X ² /ndf	
1.01 ± 0.08	51/47	

Topology 0.1<y<0.5

С	X²/ndf
0.93 ± 0.11	80/47

Systematic errors still being finalized

- Interference is largest at y ~ 0
 - Decreases as |y| rises
 - |y| <0.1 removed because of contamination with cosmic rays

PHOTON 2007July 9-13

dAu→ d(np)Aup Cross Section

Sergei Timoshenko, MePHI

- Trigger: topology requirement + neutron from deuteron break-up
- Sample of 13,400 events
- Fitted with Breit-Wigner + direct pions + background
 - \bullet $\sigma = 2.63 \pm 0.32 \pm 0.73$ mb
 - mass and width in agreement with PDG

$p_T in dAu \rightarrow d(np)Aup$ Sergei Timoshenko, MePHI

- Photons primarily emitted by Au nucleus
- Coherently (deuteron stays intact) and incoherently (deuteron dissociation) produced ρ⁰ are accessible in dAu sample

t spectrum in dAu → d(np)Aup

- Fit function: F(t) = e^{-bt}
 - access to the nucleon form factor
 - \bullet b = 9.06±0.85 GeV⁻²
 - Same as ZEUS
- Turndown at small t
 - No deuteron dissociation
 - Similar behavior seen by fixed target experiments

Excited \(\rho' \) state(s)

- STAR can observe the process $\gamma Au \rightarrow \rho' \rightarrow \pi^+\pi^-\pi^+\pi^-$
- Trigger
 - Neutron coincidence in ZDCs
 - Low multiplicity
 - BBC veto
- Signature
 - 4 charged tracks with
 - $\Sigma_{\text{tracks}}Q = 0$
 - $\Sigma_{\text{tracks}} P_T < 150 \text{ MeV/c}$

p'in 200 GeV Au-Au: first results

B. C. Kim, Pusan National University

- Preliminary results from pilot run (Run IV)
 - Analyzed: 3.9 *10⁶ events
 - ~123 ρ' candidates

Hope to at least double the statistics in Run VII

e+e- Pair Production

V. Morozov

- Very low p_T electrons
- Only studied in half-field environment
 - Minimum bias trigger only, since electrons do not reach CTB

e+e- Pairs Cross Section v. Morozov

- Event selection based on dE/dx
- Background from misidentified π⁺π⁻ pairs and incoherent hadronic events
- Differential cross sections compared with two models
 - equivalent photons (photon virtuality ignored) Klein, Nystrand
 - lowest order QED Hencken, Baur, Trautman
- Photon virtuality required to describe p_T distribution

Run VII

- Just finished collecting ~2 M
 Triggers, 200 GeV Au-Au
 - Will be analyzed this fall
 - Expect ~ 50,000 ρ
 - Various trigger issues may reduce yield
 - ◆Possibility to study rarer processes(e.g., J/Ψ)

Future: Experimental Diffraction

Wlodek Guryn, BNL

- Move Roman pots from pp2pp to STAR
- Installation planned after Run 7
 - Plan to take data in Run VIII
- Detect protons scattered at small angles
 - Pots will be ~50 m downstream of STAR
 - Can fully reconstruct events
- Expect ~ 40,000 DPE events

Diffraction in pp collisions

- Pomeron dominated
- pp elastic scattering

- pp diffraction & Dual Pomeron Exchange (DPE)
 - \bullet pp \rightarrow pp X
 - Search for glueballs & other exotica
 - Meson spectroscopy
 - Pomeron physics
 - Odderon (3-gluon counterpart of 2-gluon Pomeron)
- Polarized Pomeron studies unique to RHIC

STAR upgrades for 2009

- Time of Flight
 - Replaces central trigger barrel
 - Trigger simulation is underway
 - Triggering on multiplicity
 - Topology trigger
 - Possible PID
- Upgrade of data acquisition (DAQ)
 - New TPC front-end electronics based on ALICE's ALTRO chip
 - Will permit trigger rates of ~ 1 kHz

Summary

- STAR has measured
 - coherent and incoherent photoproduction of ρ⁰
 in AuAu at 200 GeV
 - dN/dy compared to theoretical models
 - spin density matrix elements consistent with S-channel helicity conservation
 - interference in ρ⁰ production
 - ρ'→π⁺π⁺π⁻π⁻ production in AuAu at 200 GeV
 - incoherent ρ⁰ photoproduction in dAu
- Run VII and beyond should bring additional interesting physics!