PHOTON2007 Conference Paris, July 2007

Low-x gluon density and rescattering effects

F. Hautmann

- I. Parton distributions at $x \ll 1$
- II. Parton picture, s-channel picture, and a "dictionary" to connect them
- III. Power corrections from rescattering

1 Motivation

Parton distributions at small momentum fraction $x \leftrightarrow very$ high energy scattering

Short-distance structure of protons and nuclei will be probed with the LHC in the new TeV energy range

Are partonic degrees of freedom appropriate in the high energy limit?

- ♦ This talk's point of view: push parton framework into the very small x region
 - ▷ logarithmic resummations of perturbation theory
 - \triangleright subleading-power corrections enhanced for $\times \to 0$

2. Determination of the gluon distribution at $x \ll 1$ from DIS

- $F_2 \sim \Sigma$ (flavor-singlet quark)
- \dot{F}_2 driven by gluon

$$rac{d}{d \ln Q^2} \left(egin{array}{c} \Sigma \ G \end{array}
ight) \ = \left(egin{array}{c} P_{qq} & P_{qg} \ P_{gq} & P_{gg} \end{array}
ight) \ \otimes \ \left(egin{array}{c} \Sigma \ G \end{array}
ight)$$

$$\Rightarrow \dot{F}_2 \sim \dot{\Sigma} \sim P_{qg} \otimes G \left[1 + \mathcal{O}(\Lambda^2/Q^2)\right] + \text{ quark term}$$

riangle very sensitive to higher-loop $\ln(1/x)$ corrections to P_{qg} Catani & H

 \triangleright further: $\ln(1/x)$ corrections through gluon evolution:

$$\dot{G}=P_{gg}~\otimes~G~+~{
m quark~term}$$
 Ciafaloni et al; Altarelli et al \uparrow BFKL, NL-BFKL P_{gg} (not yet NL)

> comparable logarithmic effects from Wilson coefficient functions

Example: longitudinal F_L including resummation

Thorne & White, presented at the "HERA and the LHC" Workshop, March 2007

- includes NL $\ln(1/x)$ resummation (evolution [Fadin & Lipatov, Camici & Ciafaloni] and coefficient function [Catani & H])
 - instability of fixed-order results improved by resummation
- ullet Physical interpretation: gluons radiated over large rapidity intervals with no particular ordering in p_t

 Resummation signals onset of effects beyond perturbation theory through singularity

$$R_{\omega}(\alpha_s) \sim 1/\sqrt{1/2 - \gamma_{\omega}(\alpha_s)}, \ \gamma_{\omega} \rightarrow 1/2$$

• Data used to extract G for $x < 10^{-2}$ do not have very high Q^2 $\Rightarrow 1/Q^2$ terms with $x{\to}0$ enhancement?

$$\dot{F}_2 \sim P_{qg} \otimes G \ [1+\delta] \ , \quad \delta \simeq \sum_{k>1} a_k \ (\alpha_s \ \frac{1}{x^{\nu}} \ \frac{\Lambda^2}{Q^2})^k$$

 \diamondsuit correction δ arises from multi-parton correlation terms in the OPE:

$$F = C \otimes f + \frac{1}{Q^2}C^{(4)} \otimes f^{(4)} + \dots$$

♦ can be produced from graphs with multiple gluon scatterings

⇒ use results from s-channel methods?

3. An approach to relate parton picture and s-channel picture

Soper & H, hep-ph/0702077

Parton distribution function for quarks:

$$f_{q}(x,\mu) = \frac{1}{4\pi} \left(\frac{1}{2} \sum_{s} \right) \int dy^{-} e^{ixP^{+}y^{-}} \langle P, s | \bar{\psi}(0) Q(0) \gamma^{+} Q^{\dagger}(y^{-}) \psi(0, y^{-}, \mathbf{0}) | P, s \rangle_{c}$$

$$Q^{\dagger}(y^{-}) = \mathcal{P} \exp \left\{ -ig \int_{y^{-}}^{+\infty} dz^{-} A_{a}^{+}(0, z^{-}, \mathbf{0}) t_{a} \right\}$$

- $\diamondsuit Q^\dagger(y^-)$ can be thought of as creating an eikonal line in minus direction, starting at position y^-
- \diamondsuit Operator product is UV divergent. $\to \overline{MS}$ subtraction

s-channel picture: For $x\ll 1$ parton system created by operator is far outside the hadron

 \triangleright The antiquark and the eikonal develop into a shower of partons with $k^- = (k_\perp^2 + k^2)/(2k^+) \sim m^2/(xP^+)$ very large $(m^2 \equiv (300 \text{ MeV})^2)$

 \triangleright The "fast" partons travel a long distance in y^- , then scatter from the proton's color field. This consists of gluons with $k^+ \gg x P^+$, $k^- \ll m^2/(x P^+)$ ("slow" gluons)

 \triangleright Treat this as an external field $\mathcal{A}^{\mu}(x)$. That is, gluons with $k^+ < x_c P^+$ are associated with "fast partons"; gluons with $k^+ > x_c P^+$ are included in \mathcal{A} .

s-channel representation for the quark distribution function

In this representation we obtain that the parton distribution function is given by convolution of a Wilson line correlator with a lightcone wavefunction:

$$xf_q(x,\mu) = \int d\mathbf{z} \int d\mathbf{b} \ u(\mu,\mathbf{z}) \ \Xi(\mathbf{z},\mathbf{b}),$$

where
$$\Xi(\boldsymbol{z}, \boldsymbol{b}) = \int \frac{dP'^{+}}{(2\pi)2P'^{+}} \langle P' | \frac{1}{N_c} \operatorname{Tr}[1 - V^{\dagger}(\boldsymbol{b} + \boldsymbol{z}/2)V(\boldsymbol{b} - \boldsymbol{z}/2)] | P \rangle$$

$$V(\boldsymbol{z}) = \mathcal{P} \exp \left\{ -ig \int_{-\infty}^{+\infty} dz^{-} \mathcal{A}_{a}^{+}(0, z^{-}, \boldsymbol{z}) t_{a} \right\}$$

and $u(\mu, z)$ is evaluated at one loop using $\overline{\mathrm{MS}}$ [Soper & H, hep-ph/0702077]

This representation allows one to

- relate s-channel calculations for structure functions to OPE factorization
- identify power correction from multiple scatterings (in high-energy approximation)

4. Power corrections from rescattering

$$\frac{dF_2}{d \ln Q^2} = \left(\frac{dF_2}{d \ln Q^2}\right)_{LP} + \sum_{n=1}^{\infty} R_n \frac{\lambda^2(n)}{(Q^2)^n}$$

- $\diamondsuit R_n$ calculated to order α_s from lightcone wavefunctions
- $\diamondsuit \lambda^2$ nonperturbative moments of matrix elements Ξ :

$$\lambda^{2}(-v) = \frac{1}{\Gamma(v)} \int \frac{d\boldsymbol{z}}{\pi \boldsymbol{z}^{2}} (\boldsymbol{z}^{2})^{v-1} \int d\boldsymbol{b} \; \Xi(\boldsymbol{z}, \boldsymbol{b})$$

- riangleright Ξ related to gluon distribution by short-distance expansion $|m{z}|{
 ightarrow}0$
- $\Rightarrow \lambda^2$ parameterized in terms of factorization/renormalization scales ($\sim 1/|z|$) and fitted to data
 - ullet any number of rescatterings contributes to fixed n through eikonal operators in Ξ

Tune the factorization/renormalization scales, $\mu_f \sim c_1/|z|$ and $\mu_r \sim c_2/|z|$, to the F_2 data (ZEUS, EPJC2001):

- ullet sensible description of data below $x\sim 10^{-2}$ for low and high Q^2
- physically natural choice of parameters in nonperturbative matrix elements

Using the values for the model parameters determined from data, compute the power

correction to $dF_2/d \ln Q^2$:

- ullet corrections negative and below 20 % for $x{\gtrsim}10^{-4}$ and $Q^2{\gtrsim}1~{\rm GeV}^2$
 - ⇒ power expansion not breaking down
- ullet but: slow fall-off for medium Q^2 (e.g., $1/Q^\lambda$, $\lambda=1.2$, in $1\div 10~{\rm GeV}^2$ for $x\simeq 10^{-3}$)
 - \Rightarrow correction $\sim 10~\%$ up to $Q^2 \simeq$ a few ${\rm GeV}^2$ for $x \leq 10^{-3}$
 - ♦ differs from parameterizations of higher twist commonly used in global analyses

5. Discussion and conclusions

Approximate quark distribution function by

$$xf_q(x,\mu) = \frac{N_c}{3\pi^4} \int d\boldsymbol{b} \int d\boldsymbol{z} \ \theta(\boldsymbol{z}^2 \mu^2 > a^2) \ \frac{\Xi(\boldsymbol{b},\boldsymbol{z})}{\boldsymbol{z}^4}$$

When is this reliable?

- \diamondsuit renormalization cut $z>a/\mu$; suppose μ such that $a/\mu\ll R_p$
- \diamondsuit integration extends to arbitrarily large ${m z}$, but once ${m z}>1/Q_s({m b})$ we have $\Xi({m b},{m z})\approx 1\Rightarrow$ fast fall-off
 - ullet Q_s likely to be sizeable in the gluon sector
 - lies at lower momenta for quarks

 \hookrightarrow e.g.: hard-diffractive data

- ightharpoonup ZEUS data for diffractive $F_2^{(D)}$
- ▷ predictions based on diffractive parton distribution functions [Soper & H]

- top graph corresponds to $Q_s(\mathbf{0}, \mathrm{fund.}) \simeq 0.65 \; \mathrm{GeV} \quad (Q_s \gtrsim 1 \; \mathrm{GeV} \; \mathrm{for \; adjoint})$
- bottom graph (lower Q_s): shape disfavored by data

Prospects

Methods to connect parton picture and s-channel picture
 allow one to identify (certain classes of) power-suppressed contributions

• Possible impact of slow fall-off for medium Q^2 and $x \lesssim 10^{-3}$?

⇒ need firmer understanding of high-energy approximation

• Smaller corrections for F_T than for F_2 ? (measure F_L separately)

Smaller corrections for NNLO partons?

• Effective Q_s larger for observables directly coupled to gluons: e.g. \rightarrow access rescattering effects in jet final states ?