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1. Introduction

1.1. Motivation

Recently the electromagnetic (EM) processes in ultra-relativistic nu-
clear collisions were discussed in numerous papers
(see review Baur et al. Phys. Rep. 364, 359 (2002) and references therein).

For the RHIC and LHC colliders the charge numbers of nuclei Z1 =
Z2 ≡ Z and their Lorentz factors γ1 = γ2 ≡ γ are given in Table:

Collider Z γ

RHIC, Au-Au 79 108

LHC, Pb-Pb 82 3000
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Only a few EM processes are related to Fundamental Physics, but

some of EM processes are of great importance mainly for two reasons:

1) They are dangerous or

2) They are useful

Two examples:

1) The e+e− pair production. The number of the produced elec-
trons is so huge that some of them can be captured by nuclei, that
immediately leads to loss of these nuclei from the beam. Thus, this
very process is determined mainly the life time of the beam and a
possible luminosity of a machine.
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2) Coherent bremsstrahlung, not ordinary bremsstrahlung

Z1 Z2 → Z1 Z2 γ

but coherent one! The number of the produced photons at the RHIC

is so huge in the region of the infrared light, that this process can be

used for monitoring beam collisions:

R. Engel, A. Schiller, V.G. Serbo. A new possibility to monitor collisions of rela-

tivistic heavy ions at LHC and RHIC, Particle Accelerators 56, 1 (1996)

D. Trbojevic, D. Gasner, W. MacKay, G. McIntyre, S. Peggs, V. Serbo, G. Kotkin.

Experimental set-up to measure coherent bremssrahlung and beam profiles in RHIC.

8th European Particle Accelerator Conference (EPAC 2002, 3–7 June, 2002, Paris)

p. 1986
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It means that various EM processes have to be estimated (their

cross sections and distributions) not to miss something interesting

or dangerous.
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The ordinary nuclear bremsstrahlung without excitation of the
final nuclei is given by Feynman diagrams of Fig. 1
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Fig. 1

and was known in detail many years ago
Bertulany, Baur Phys. Rep. 163, 299 (1988)

It can be described as the Compton scattering of the equivalent
photon off opposite nucleus.
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In the present report we consider not the Compton subprocess, but

another one – the Delbrück scattering subprocess — which can

given an essential contribution to emission of photons at the nuclear

collisions without excitation of the final nuclei (see Fig. 2).
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Fig. 2

First note: Baur, Bertulany, Baur Z. f. Phys. A 330, 77 (1988)
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1.2. Main result

At first sight, this is a process of a very small cross section since

σ ∝ α7.

But at second sight, we should add a very large factor

Z6 ∼ 1011

and take into account that the cross section scale is

1/m2
e .

And the last, but not the least, we will show that this cross section
has an additional logarithmic enhancement of the order of

L2 & 100 , L = ln
(
γ2

)
.
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As a result, the discussed cross section for the LHC collider is

σ ∼ (Zα)6 α

m2
e

L2 ∼ 50 barn .

That is quite serious number!
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2. Delbrück scattering (DS)

The DS is an elastic scattering of a photon in the Coulomb field of
a nucleus via a virtual electron-positron loop (Fig. 3)
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Its properties are well known

see review Milstein, Schumacher, Phys. Rep. 243, 183 (1994)

The total cross section of this process vanishes at small energies

σD(ωL, Z) ∼ (Zα)4
α2

m2

(
ωL

m

)4
at ωL = qP/M ¿ m , m ≡ me , (1)
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but tends to constant at ωL À m.

In the lowest order of the perturbative theory this constant is

σ
(0)
D (Z) = 1.07 (Zα)4

α2

m2
at ωL À m . (2)

The Coulomb corrections ∼ (Zα)2n decrease it significantly

σD(ωL, Z)ωLÀm → σD(Z) =
σ
(0)
D (Z)

rZ
, (3)

For example, for DS off the Au (Z = 79) and Pb (Z = 82) nuclei

σD(Z = 79) = 5.5 mb , σD(Z = 82) = 6.2 mb , (4)

this corresponds to r79 = 1.7 and r82 = 1.8.
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Comparison:

Cross section for the nuclear Thomson scattering is

σT(Z) =
8π

3

Z4α2

M2
, (5)

where M ≈ Amp .

The ratio

σT(Z)

σD(Z)
= 7.83 rZ

(
m

α2Amp

)2

≈ 1

30
for 208Pb (6)

is small for heavy nuclei.
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The main contribution to DS is given by the region of transverse
momenta of the final photon k⊥ ∼ m.
For larger transverse momentum,

dσD = (Zα)4 α2 f(k⊥/m, Z)
dk2
⊥

m4
⊥

at m . k⊥ ¿ ωL , (7)

where

m⊥ =
√

m2 + k2
⊥

and f(k⊥/m, Z) is slowly varying function of k⊥/m.

For Z = 82 this function is:

f(k⊥/m, Z) ≈ 1.2 at k⊥ À m,

f(k⊥/m, Z) ≈ 0.48 at k⊥ = m.
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It should be noted that such a distribution is valid for not very large

transverse momentum:

at k⊥ < 1/R,

where R = 1.2A1/3 fm

is the nucleus radius,

R = 7 fm, 1/R = 28 MeV for Au and Pb.

We assume further that m⊥ < 1/R.
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3. Contribution of the DS into emission of
photons in nuclear collision

3.1. Total cross section

Below we assume that Z1 = Z2 and γ1 = γ2 for the sake of simplicity.
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The cross section is given by (see Fig. 2)

dσ = dσa + dσb (8)
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Fig. 2

The interference term is small and can be safely neglected.
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In the equivalent photon approximation

dσa = dn1(ω)σD(ωL, Z) , (9)

where the number of equivalent photons is

dn1(ω) = 2
Z2α

π

dω

ω
ln

mγ

ω
. (10)

Then integrating the cross section (9) over ω in the region
m

γ
. ω . mγ , (11)

we obtain the total cross section in the leading log approximation

σ = σa + σb = 2
Z2α

π
σD(Z)L2 , L = ln

P1P2

2M1M2
= ln(γ2) . (12)
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In particular, for the Au-Au collisions at the RHIC collider the total

cross section

σ = 14 barn,

for the Pb-Pb collisions at the LHC collider the total cross section

σ = 50 barn.

The size of these cross sections is larger that the total hadronic/nuclear

cross section for the Pb-Pb collisions of 7.9 barn.
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3.2. Energy and angular distribution

In the same way, we can go from the energy of the equivalent photon

ω to the energy of the final photon Eγ and to obtain

the inclusive cross section

dσ =
2

π2 (Zα)6α
f(k⊥/m, Z)
(
m2 + k2

⊥
)2 L

d3k

Eγ
, m⊥ ¿ Eγ ¿ m⊥γ (13)

and the spectrum of photons

dσ =
4

π
Z2ασD(Z)L

dEγ

Eγ
, m ¿ Eγ ¿ mγ . (14)
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The typical emission angle of the photon is not very small:

1

γ
¿ θγ =

k⊥
Eγ

¿ 1 .

Remark. The spectral distribution of photons (14) has the form

dσ ∝ dEγ

Eγ
,

which is typical for the bremsstrahlung spectrum of soft photons and

usually leads to the infrared divergency. In our case this type of

distribution is valid for not soft photons in the region m ¿ Eγ ¿ mγ.

When the photon energy tends to zero, we should take into account

that the Delbrück cross section vanishes for soft photons. As a result,

the discussed cross section has no infrared divergency.
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4. Comparison

Comparison the obtained spectrum with that for the ordinary brems-

strahlung spectrum shows that for the same photon energy the ratio

dσa
bremsstrahlung

dσa
∼ σT(Z)

σD(Z)
≈ 1

30
for 208Pb (15)

is small for heavy nuclei.
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5. Conclusions

1) The total cross section, the energy and angular distribution of

photons, emitted due to the Delbrück subprocess are calculated

2) It was found out that the corresponding cross section is large

enough

3) If this process can be detected, one can study the Delbrück scat-

tering in the energy range up to

ωL ∼ 2mγ2 ,
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which is

10 GeV for RHIC and

8 TeV for LHC.

Not bad!

It should be stressed that the discussed process is very sensitive to

high order corrections ∼ (Zα)2n, which reduce the lowest order result

almost two times.
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