Heavy Flavours in DIS

Marc-Oliver Bönig

Universität Dortmund

Outline:

- Introduction
- Charm Production
- Beauty Production
- Structure Functions
- Summary

Heavy Flavour Production

Theoretical Approches

massive scheme (FFNS)

- fixed order calculation
- heavy quarks are produced in the hard process
- neglecting: $\left[\alpha_s \ln(Q^2/m_c^2)\right]^n$
- valid at: $m_{c/b}^2 \sim Q^2$

massless scheme

- neglect masses in hard interaction
- heavy quarks intrinsic content of proton/photon
- **Resums:** $\left[\alpha_s \ln(Q^2/m_c^2)\right]^n$
- valid at: $m_{c/b}^2 \ll Q^2$

intermediate (variable) scheme (VFNS)

- low Q²: massive scheme
- intermediate Q²: interpolation
- high Q²: massless scheme

The Detectors

- 27.6 on 920 GeV -> $\sqrt{s} = 319$ GeV
- multi purpose detectors
- 4 π coverage

- onion shape layout:
 - vertexing
 - tracking
 - calorimeters
 - muon chambers

Charm Tagging

2.) via lifetime using a

silicon vertex detector

- 1.) via resonance decay
 - $D^{\star} \to D^0 \pi_{slow} \to K \pi \pi_{slow}$

Plot: $\Delta M = M (K \pi \pi_{slow}) - M (K \pi)$

Secondary Vertex

Decay Length

Primary Vertex

Charm Cross Sections

D* data

- uncertainty reduced compared to HERA I analysis
- data described by the MC & NLO prediction:

HVQDIS: massive NLO calculation (FFNS)

- HVQDIS seems to be slightly too flat
- **HI:** HVQDIS tends to be too low (different charm mass)

Charm Cross Section (ii)

D* data

- MC describes the data
- HVQDIS fails in forward direction
- perhaps due to different Proton PDF

well described by HVQDIS

D* Cross Section (ii)

- deviation in forward η localised at low p_t
- otherwise HVQDIS describes the data

D* production

very nice agreement over 4 orders of magnitude in Q²

D* + dijet production

- charm tagging with D* mesons
- use the two jets to fully reconstruct the two charm quarks
- x_γ^{obs}: momentum fraction of photon entering hard process

- HVQDIS agrees with the data
- no additional resolved photon contributions needed
- CASCADE equally good
- RAPGAP needs resolved photon contributions at low Q² only

Charm Fragmentation

- charm production well described by pQCD
- transition from quarks to hadron often use non-perturbative fragmentation functions
- expected to be universal
- Peterson FF: $D_Q^H = \frac{N}{z [(1 (1/z)) \epsilon (1 z)]^2}$
- free parameter ϵ_Q "hardness" of fragmentation
- z: energy fraction of charm quark carried by charmed meson

Measurement of ϵ_Q using D*'s

Hemisphere Method:

- z determination from energy in D* hemisphere
- kinematic region down to charm production threshold

Jet-Method:

- D* associated jet used for z
- due to jet \rightarrow higher E_t threshold

	low pt (HI)	medium p _t (HI)	high pt (ZEUS)
EQ =	0.018 +0.004 -0.003	0.030 +0.006 -0.005	0.064 ±0.006 ^{+0.011} - 0.008

Beauty with ptrel-method

 light flavour: steeply falling spectrum in pt^{rel}

- use MC simulation for the shape of the contribution by uds, c and b quarks
- fit the fractions of the 3 contributions such that MC describes pt^{rel} best

Jet

p,Rel

B.

Jet

Beauty with ptrel method (ii)

- data described in shape by the predictions
- but NLO calculation too low (also see the talk by A. Geiser ;-))

visible range:

• $Q^2 > 4 \text{ GeV}^2$

• p^µ > 1.5 GeV

- $\eta^{\mu} > -1.6$ • 0.05 < y < 0.7
 - $E_t^{jet} > 5 \text{ GeV}$
 - $-2 < \eta^{jet} < 2.5$

Beauty with ptrel method (iii)

double differential in x and Q^2

use for the extraction of the structure function F_2^{bb}

Marc-Oliver Bönig, Universität Dortmund

Proton Structure Function F₂

Inclusive ep scattering

 $\frac{d^2\sigma^{\rm ep}}{dO^2dx} \propto F_2(Q^2, x)$

Contribution of c/b to inclusive F_2

 $\frac{d^2 \sigma^{\mathrm{ep} \to c\bar{c}X}}{dQ^2 dx} \propto F_2^{c\bar{c}}(Q^2, x)$

F2cc(bb) is contribution to F2 originating from c(b) quarks

Impact parameter method

- long lifetime of the B-Mesons causes large positive impact parameter δ
- light particles → symmetric distribution around 0

- estimate quark direction by jet,
- or by scattering angle of electron
- inclusive event selection:
 - high statistics (2 Mio events)
 - large phase space (I track > 500 MeV)

Impact Parameter δ

Significance Distributions

• use significance of the track: $S = \frac{\sigma}{\sigma(\delta)}$

• SI, S2, S3 track with highest, 2nd and 3rd highest significance

fit of the significance distributions using the MC as a template for the shapes of the 3 contributions (uds, c, b)

F2^{cc} from H1 & ZEUS

- scaling violations clearly visible
- good agreement between the different measurements

- Differences caused by matching procedure of massive and massless calculations
- high precision data → able to distinguish between predictions

F2^{bb} Results

- first measurements of F₂^{bb}
- statistical error dominates,
- but more data is coming (factor of 5-10 more)
- data not yet decisive
- predictions differ up to a factor 2

Ratio: F₂^{cc/bb}/F₂

- shapes are different from F₂
- F_2^{cc} contribution to $F_2 \sim 30\%$ \rightarrow significant effect on inclusive F_2
- F_2^{bb} contribution is small
- use to study different theoretical QCD approaches, especially in the intermediate scheme (VFNS)

Summary

Charm:

- good description achieved
- some deviations are seen

Beauty:

- reasonable agreement between data and theory
- data tends to be higher than theory

Extractions of the structure function F_2^{cc} and for the first time F_2^{bb}

- HERA I data analysis finished
- first (prel.) HERA II results are there
- much more to come

Backup Slides

J/ψ production

Colour Singlet Model

- radiation of hard gluon
- changes also kinematics of the interaction
- implemented in EPJPSI

Non Relativistic QCD

- contribution by colour octet states
- soft gluon radiation
- factorisation of
 - hard scattering process
 - transition to real J/ψ (non perturbative LDME)

Inelastic J/ψ Production

analysed channels: $J/\psi \rightarrow ee/\mu\mu$

- EPJPSI:
 - DGLAP
 - normalisation to low
 - too steep in Q²

CASCADE

- CCFM
- normalisation to high
- too hard in Q^2
- too steep in W_{YP}

 \Rightarrow J/ ψ Production theoretically not well understood

D* + Dijet production

- charm tagging with D* mesons
- reconstruct 2nd charm quark from the jet

gluon radiation (NLO) or initial k_t can lead to non back to back topologies

- CASCADE to broad
- some contribution missing in HVQDIS (NNLO?)

F2^{cc/bb} measurement

extrapolation to full phase space:

$$\sigma^{b\bar{b}}(x,Q^2) = \sigma_{\rm NLO}^{b\bar{b}}(x,Q^2) \frac{d^2\sigma_{\rm data}^{b\bar{b},\rm vis}}{dxdQ^2} / \frac{d^2\sigma_{\rm NLO}^{b\bar{b},\rm vis}}{dxdQ^2}$$

reduced cross section:

$$\frac{d^2 \tilde{\sigma}^{b\bar{b}}}{dx dQ^2} = \frac{d^2 \sigma^{b\bar{b}}}{dx dQ^2} \frac{xQ^4}{2\pi \alpha^2 (1+(1-y)^2)}$$

cross section calculation using HVQDIS in visible kinematic region

cross section calculation

using HVQDIS

Structure Function: $\tilde{\sigma}^{b\bar{b}}(x,Q^2) = F_2^{b\bar{b}} - \frac{y^2}{1+(1-y)^2}F_L^{b\bar{b}}$

 $F_2^{cc/bb}$ = beauty/charm contribution to F_2

Beauty at H1 and ZEUS

 $\frac{d^2 \tilde{\sigma}^{b\bar{b}}}{xQ^2} = \frac{d^2 \sigma^{b\bar{b}}}{dxdQ^2} \frac{xQ^4}{2\pi\alpha^2(1+(1-y)^2)}$ reduced cross section: $\tilde{\sigma}^{b\bar{b}}$ $Q^2 = 25 \text{ GeV}^2$ $Q^2 = 8 \text{ GeV}^2$ $Q^2 = 12 \text{ GeV}^2$ 0.02 ● ▼ HI: 57.4pb⁻¹ (HERA I) ZEUS: 39pb⁻¹ (HERA II) 0.01 0 $Q^2 = 60 \text{ GeV}^2$ $Q^2 =$ $O^2 = 200 \text{ GeV}^2$ 0.1 $110 \, \text{GeV}^2$ ZEUS data lie above H1 0.075 0.05 still compatible within errors 0.025 quite some spread of the x^{10⁻⁴} 0 10⁻² 10 -4 10 -2 10^{-3} 10^{-3} $Q^2 = 650 \text{ GeV}^2$ X theory predictions • H1 Data 0.04 • H1 Data (High Q^2) ZEUS (prel.) 39 pb⁻¹ ····· MRST04 ----- HVODIS data will distinguish with full MRST NNLO + CTEQ5F4 CTEQ6HQ **HERA** statistic 0.02 0 10 -4 10^{-3} 10

F_2^{cc} from D^{\pm}

