Prompt Photon Production in γ p, e p and hadronic collisions

Gudrun Heinrich

University of Edinburgh

Photon 2007, La Sorbonne, Paris, 10.07.07

Overview

- Introduction
- Photoproduction of prompt photons (+jet)
- Prompt photons in DIS
- Diphoton production in hadronic collisions
- Photon (+jet) production in hadronic collisions (Tevatron, RHIC, LHC)
- Summary and outlook
- not covered: final states without photons (single-inclusive jet, dijets, mesons, quarkonia, ...)

Introduction

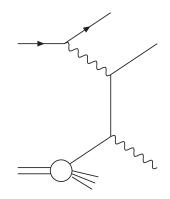
- Photons are of major importance in particle physics
- "dual nature":
 - pointlike particle described by QED
 - hadronic structure
 photon structure- and fragmentation functions
- ideal to study QCD (→ gluon pdfs . . .)
- H $\rightarrow \gamma \gamma$ discovery channel for light Higgs
- important in New Physics searches
 (e.g. decay of SUSY particles or excited states)

Photoproduction of prompt photons

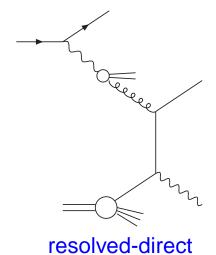
high energy ep scattering at HERA dominated by photoproduction processes:

electron scattered at small angles ⇒ quasi-real photon interacts with proton

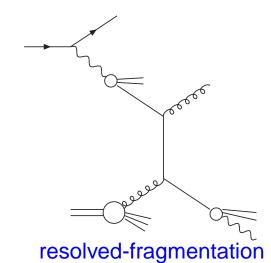
spectrum of quasi-real photons:


Weizsäcker-Williams approximation

$$f_{\gamma/e}(y) = \frac{\alpha}{2\pi} \left\{ \frac{1 + (1 - y)^2}{y} \operatorname{Log} \frac{Q_{\max}^2(1 - y)}{m_e^2 y^2} - \frac{2(1 - y)}{y} \right\}$$


photoproduction: $Q_{\rm max}^2 \sim 1 \, GeV^2$

Photoproduction of prompt photons


four categories of subprocesses:

direct-direct

direct-fragmentation

collinear factorisation

$$d\sigma^{AB \to \gamma j}(P_A, P_B, P_{\gamma}, P_j) =$$

$$\sum_{a,b,c} \int dx_a \int dx_b F_{a/A}(x_a, M) F_{b/B}(x_b, M)$$

$$\left\{ d\hat{\sigma}^{\text{dir}} + d\hat{\sigma}^{\text{frag}} \right\}$$

$$d\hat{\sigma}^{\text{dir}} = d\hat{\sigma}^{ab \to \gamma j}(x_a, x_b, P_{\gamma}, P_j, \mu, M, M_F)$$

$$d\hat{\sigma}^{\text{frag}} = \int dz D_{\gamma/c}(z, M_F)$$

$$d\hat{\sigma}^{ab \to c j}(x_a, x_b, P_{\gamma}/z, P_j, \mu, M, M_F)$$

 M/M_F initial/final state factorisation scales, μ renormalisation scale

Photoproduction

• resolved photon (a = quark, gluon):

$$F_{a/e}(x, M) = \int dx^{\gamma} \int dy \, \delta(x^{\gamma}y - x) \, f_{\gamma/e}(y) \, F_{a/\gamma}(x^{\gamma}, M)$$

 $F_{a/\gamma}(x^{\gamma}, M)$: parton distributions in the photon

• direct photon $(a = \gamma)$: $F_{a/e}(x, M) = f_{\gamma/e}(x), x^{\gamma} = 1$

possibility to "switch on/off" resolved photon by suppressing/enhancing large x^{γ}

$$x_{obs}^{\gamma} = \frac{p_T^{\gamma} e^{-\eta^{\gamma}} + p_T^{jet} e^{-\eta^{jet}}}{2E^{\gamma}}$$

Photon isolation

to single out prompt photon events from background of secondary photons produced by decays of π^0 , η , ω mesons:

impose isolation cuts

commonly used isolation criterion:

inside a cone around the photon

$$(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2 \le R_{\text{exp}}^2 : \quad E_T^{had} \le E_{T max}$$

 $E_{T\,max}, R_{\mathrm exp}$ fixed by experiment

e.g.
$$E_{T\,max} = \epsilon\,p_T^{\gamma}$$
 , $\epsilon = 0.1$, $R_{\mathrm exp} = 1$

isolation also reduces the fragmentation component

correspondence between theo. and exp. isolation delicate

(e.g. due to hadronic activity from underlying event in isolation cone)

Theoretical (parton level) programs beyond LO

photoproduction only!

- Baer, Ohnemus, Owens 1990 (NLL only)
- Aurenche, Chiappetta, Fontannaz, Guillet, Pilon 1992 (inclusive only)
- Gordon, Storrow 1994 (inclusive only)
- **Sordon, Vogelsang 1995** (isolated γ in collinear approximation)
- **●** Gordon 1998 (γ +jet) (isolated γ in collinear approximation)
- **▶** Krawczyk, Zembrzuski 2001, 2003 (γ incl, γ +jet) (fragmentation not at NLO)
- Fontannaz, Guillet, GH 2001 (γ incl, γ +jet) EPHOX: partonic Monte Carlo program

PHOX programs

The PHOX Family

NLO Monte Carlo programs (partonic event generators) to calculate cross sections for the production of large- p_T photons, hadrons and jets

http://wwwlapp.in2p3.fr/lapth/PHOX_FAMILY/main.html

P. Aurenche, T. Binoth, M. Fontannaz, J.Ph. Guillet, GH, E. Pilon, M. Werlen

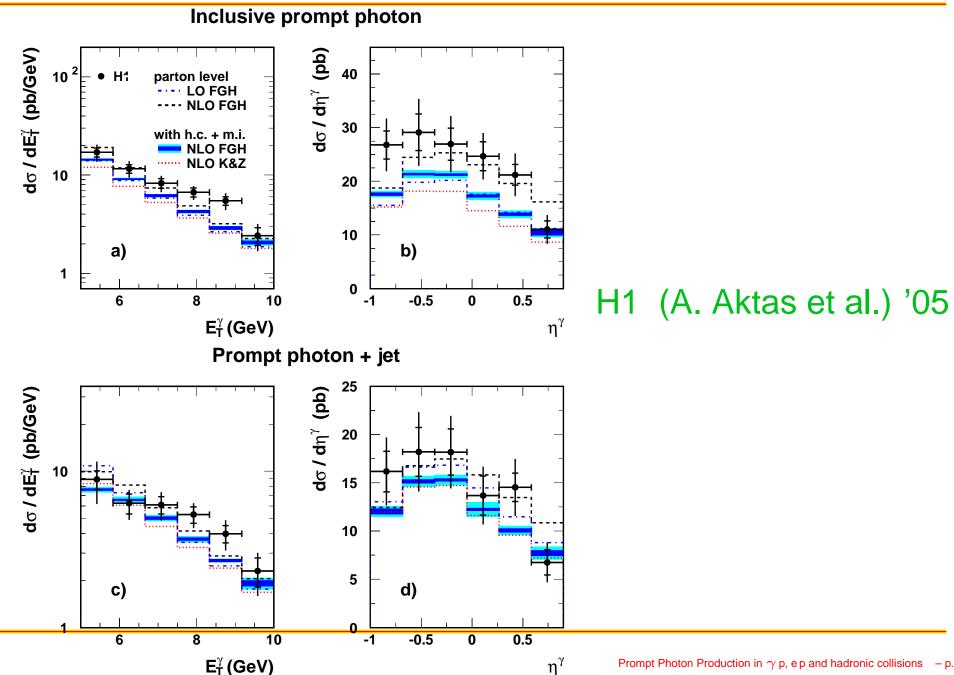
DIPHOX

$$h_1 \ h_2
ightarrow \gamma \ + X$$
 , $h_1 \ h_2
ightarrow \gamma \ h_3 \ + X$, $h_1 \ h_2
ightarrow h_3 \ h_4 \ + X$

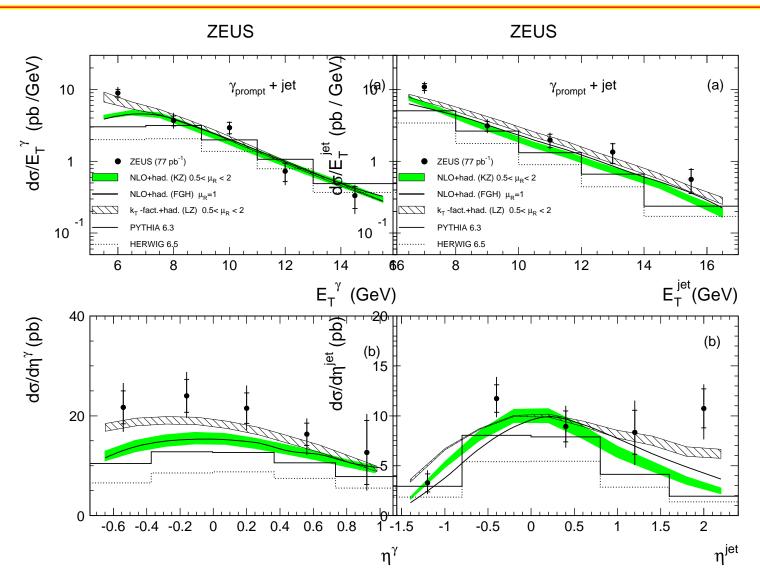
JETPHOX

$$h_1 h_2 \rightarrow \gamma$$
 jet $+ X$, $h_1 h_2 \rightarrow \gamma + X$
 $h_1 h_2 \rightarrow h_3$ jet $+ X$, $h_1 h_2 \rightarrow h_3 + X$

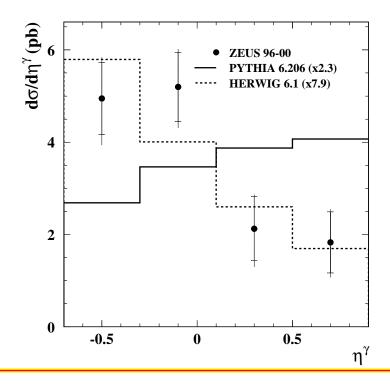
EPHOX

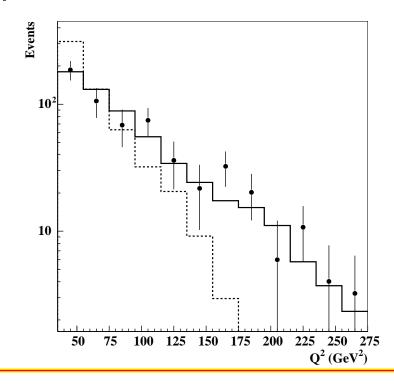

$$\gamma p o \gamma \ \ {
m jet} \ + X$$
 , $\gamma p o \gamma \ + X$ $\gamma p o h \ {
m jet} \ + X$, $\gamma p o h + X$

TWINPHOX


$$\gamma \gamma \to \gamma \ \ \mathrm{jet} \ + X$$
 , $\gamma \gamma \to \gamma \ + X$

Photoproduction of inclusive γ and γ + jet: H1


Photoproduction of γ + jet: ZEUS



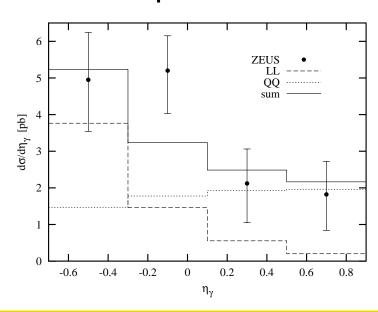
ZEUS (S. Chekanov et al.) '07

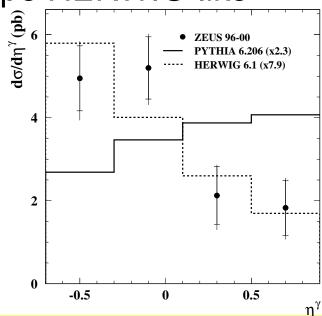
Prompt photons in DIS

- recent ZEUS data Chekanov et al. '04
- γ +jet: fair agreement with NLO theory Gehrmann-De Ridder, Kramer, Spiesberger 2000
- inclusive γ : disagreement with PYTHIA 6.206 (η^{γ} distribution) and HERWIG 6.1 (too soft Q^2 distribution) both in normalisation and shape

Prompt photons in DIS

partonic subprocess (LO): $q + l \rightarrow \gamma + q + l$


photon radiation: off quarks (QQ), off leptons (LL) or interference (QL) (small)

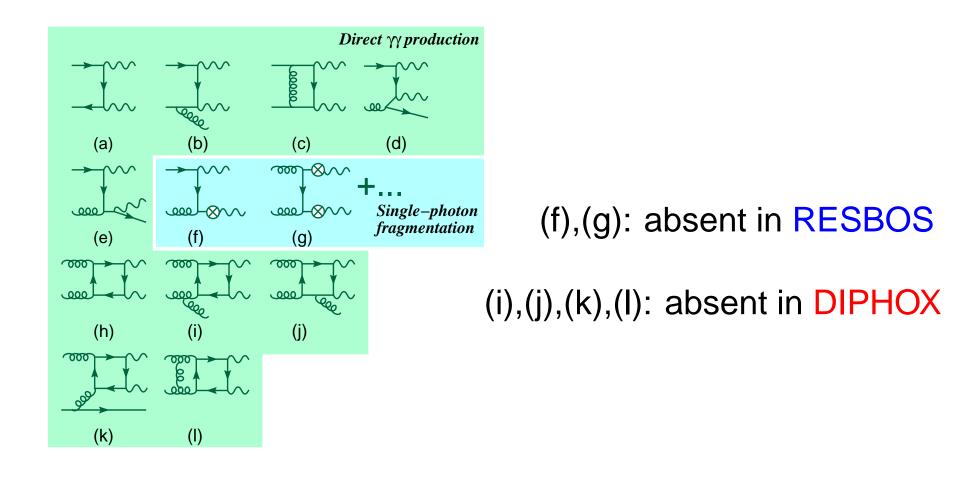

result of partonic calculation: (large angle rad. + frag. photons)

A. Gehrmann-De Ridder, T. Gehrmann, E. Poulsen 2006

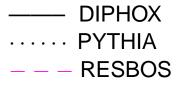
• QQ and LL each contribute $\sim 50\%$, shapes quite different

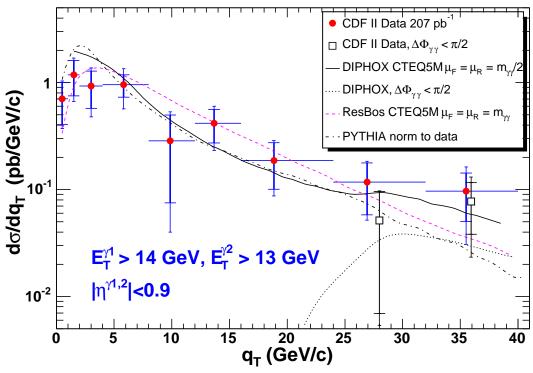
QQ shape PYTHIA-like, LL shape HERWIG-like

Prompt photon production in hadronic collisions


- background to $H \to \gamma \gamma$ and New Physics
- **•** access to gluon pdfs (LO: $q g \rightarrow q \gamma$)
- free from systematic errors related to jet identification/calibration
- lower p_T range accessible
- **.** . . .

Diphoton production in hadronic collisions


available codes:


- DIPHOX Binoth,Fontannaz,Guillet,Pilon,Werlen 2000
 - inclusion of fragmentation components fully at NLO
- RESBOS Balazs, Berger, Mrenna, Nadolsky, Schmidt, Yuan 1998, 2000 update 2007: Balazs, Berger, Nadolsky, Yuan
 - NNLL resummation of initial-state singularities at small q_T
 - ullet inclusion of NLO $gg o \gamma \gamma$ diagrams Bern, Dixon, Schmidt 02
 - approximation for fragmentation contributions

Diphoton production in hadronic collisions

$p\, ar p o \gamma \gamma$ at CDF, q_T distribution

CDF 05


isolation cuts: $E_{T,\mathrm{max}}^{had} = 1 \, GeV, R = 0.4$

anti-collinearity cuts: $(\eta_{\gamma_1} - \eta_{\gamma_2})^2 + (\Delta \phi_{\gamma\gamma})^2 \ge R_{\min}^2$, $R_{\min} = 0.3$

bump interpretation:

interplay between collinear enhancement of NLO fragmentation component and anti-collinearity cut

Inclusive prompt photon production: Tevatron

$$23 \, GeV \le p_T^{\gamma} \le 300 \, GeV$$
, $|\eta^{\gamma}| < 0.9$

widest p_T^{γ} range ever!

Prompt photon + jet production: D0

measurement of $p \, \bar{p} \rightarrow \gamma + \mathrm{jet} + X$ for

30 GeV
$$\leq p_T^{\gamma} \leq 300 \, \text{GeV}$$
 ($|\eta^{\gamma}| < 1, \, p_T^{ ext{jet}} > 15 \, \text{GeV}$)

 $g q \rightarrow q \gamma$ dominates in wide kinematical range

division into 4 regions: (0 < η^{γ} < 1)

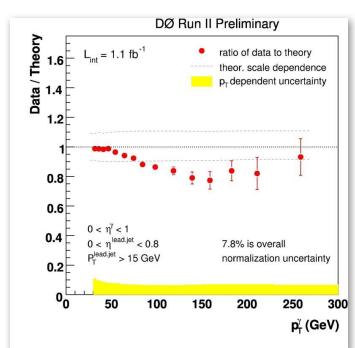
1.
$$0 < \eta^{\rm jet} < 0.8$$

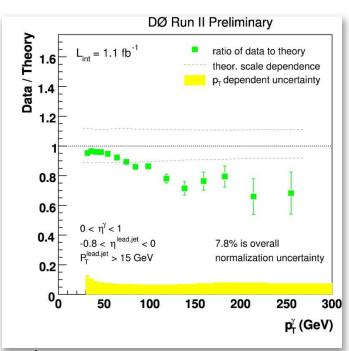
2.
$$-0.8 < \eta^{\rm jet} < 0$$

3.
$$1.5 < \eta^{\rm jet} < 2.5$$

4.
$$-2.5 < \eta^{\rm jet} < -1.5$$

regions 3 & 4: $x_{1/2} \gg x_{2/1}$


$$x_{1/2} \sim \frac{p_T^{\gamma} e^{\pm \eta^{\gamma}} + p_T^{\text{jet}} e^{\pm \eta^{\text{jet}}}}{\sqrt{s}}$$

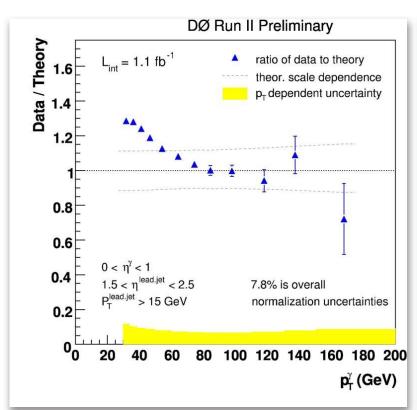

Prompt photon + jet production: D0

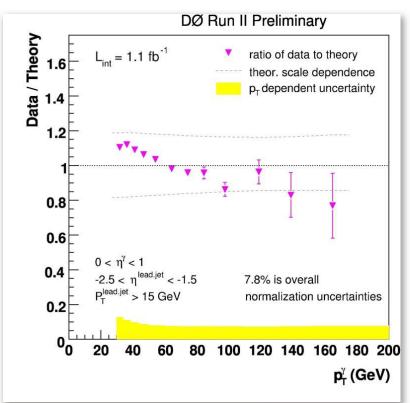
Comparison with theory

- shown here only statistical and correlated uncertainties
- the cross sections show deviation from the theory predictions for pT>100 GeV for these two regions where jets are located in the central rapidity region
- shape of the data-to-theory above has the same structures as observed earlier in UA2, CDF, and D0 Runll (erratum is to be released soon) in inclusive photon measurements

DIS 2007 - 04/17/07

Oleksiy Atramentov, FSU


13


Prompt photon + jet production: D0

Comparison with theory

- deviation is also seen for pT<50GeV for Region 3
- same shape, although within error bands in Region 4

DIS 2007 - 04/17/07

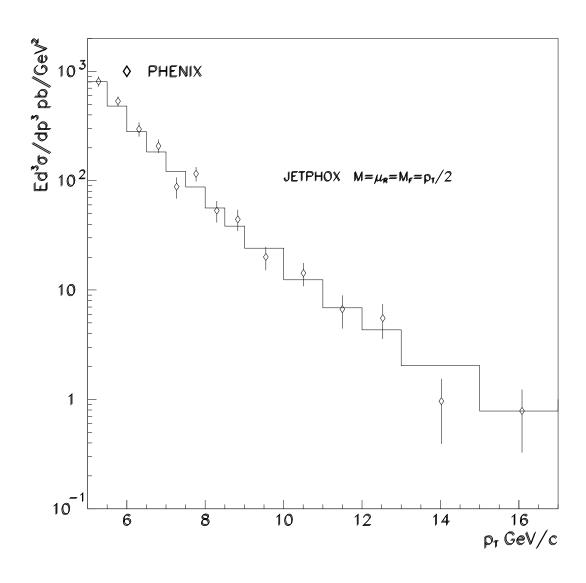
Oleksiy Atramentov, FSU

14

Prompt photon production at RHIC (PHENIX)

RHIC pp collisions at $\sqrt{s} = 200 \, \text{GeV}$:

- cover intermediate energy range between fixed target and Tevatron collider energies
- use different isolation method ⇒ study systematics
- possibility to measure photon-hadron azimuthal correlations exp: J. Jin (PHENIX), May '07 theo: Pietrycki, Szczurek, June '07 + this conference
- baseline to study direct photons in relativistic heavy ion collisions

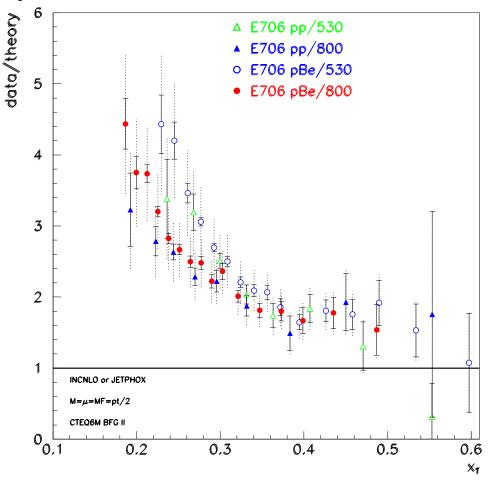

Prompt photon production at RHIC

heavy ion collisions:

photons emitted at different stages:

- in initial state, well described by NLO pQCD
- in the hot, dense medium (mostly thermal emission)
- interaction of photons from jet fragmentation with dense matter
- in the final hadron-gas phase

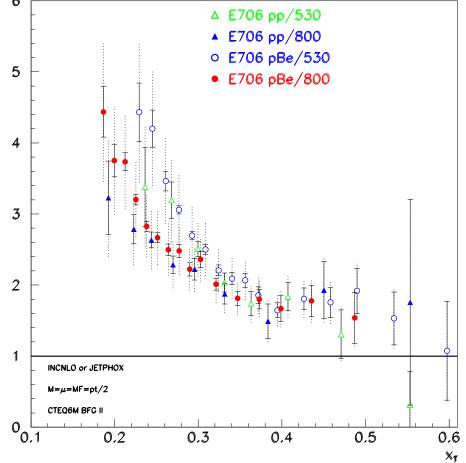
Prompt photon production at RHIC (PHENIX)


wasn't there a problem ?

- wasn't there a problem ?
- disagreement of NLO theory and data in normalisation and shape?

wasn't there a problem?

disagreement of NLO theory and data in


normalisation and shape?

wasn't there a problem ?

disagreement of NLO theory and data in normalisation and shape? § ⁶

large effects from multiple soft gluon emission, necessity for large "intrinsic k_T" to account for these plus non-perturbative effects?

theory efforts: resummation for $x_T = 2p_T/\sqrt{s} \rightarrow 1$:

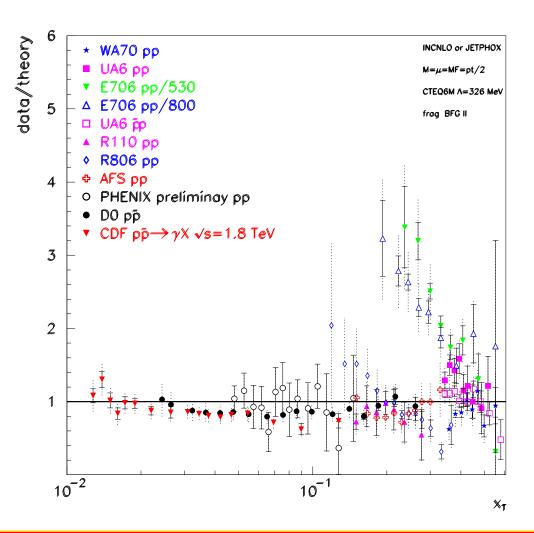
Laenen, Oderda, Sterman '98

Catani, Mangano, Nason, Oleari, Vogelang '99

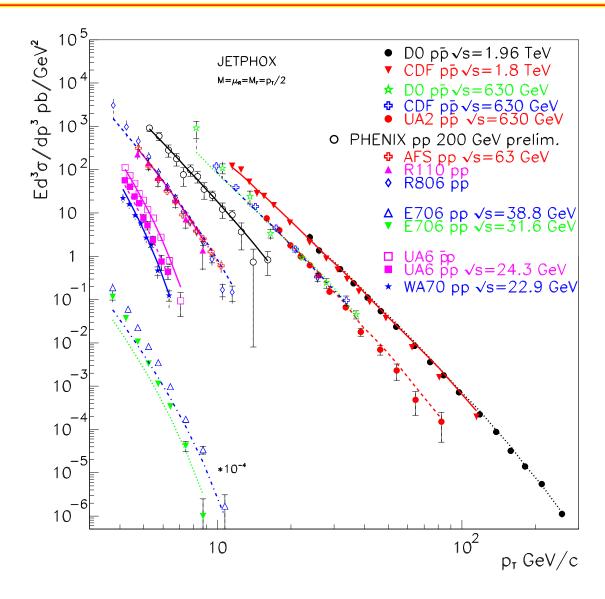
Kidonakis, Owens 2000

Sterman, Vogelsang 2001

De Florian, Vogelsang 2005 (frag)

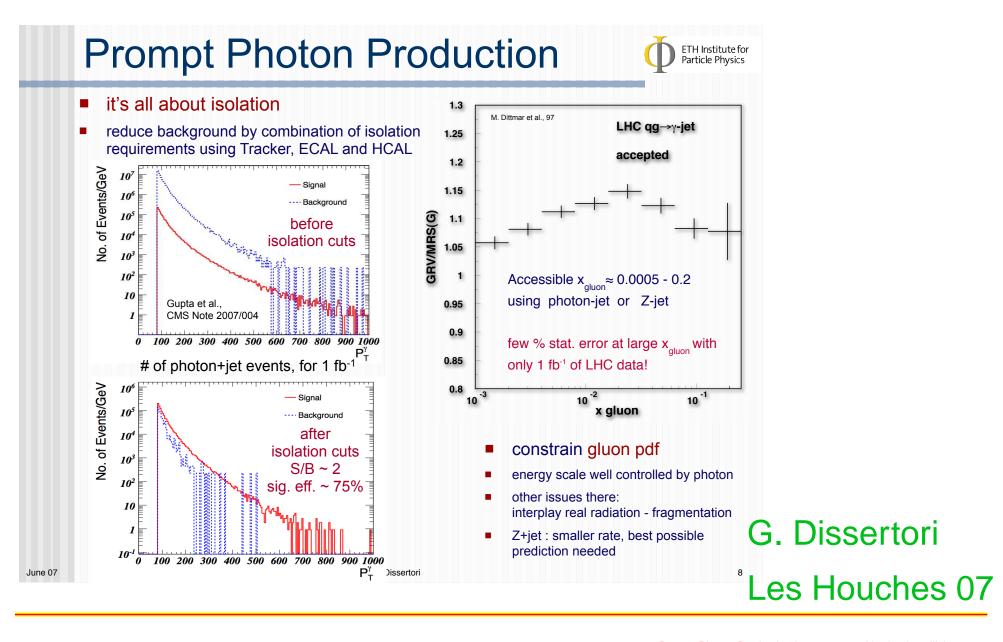

effect of resummation extends down to $x_T \gtrsim 10^{-1} \Rightarrow$ covers fixed target range

joint resummation of threshold and recoil effects (multiple soft-gluon emission): Sterman, Vogelsang 2005


result:

- scale dependence considerably reduced
- ullet recoil effects in inclusive γ production relatively small
- agreement with almost all prompt photon data

data/theory from fixed target to collider energies



Aurenche, Fontannaz, Guillet, Pilon, Werlen 06

Aurenche, Fontannaz, Guillet, Pilon, Werlen 06

Photon plus jet production: LHC

kinematical range covered by photon/jet data

Aurenche, Fontannaz, Guillet, Pilon, Werlen 06

we have learnt a lot (and still do!) from prompt photon production at HERA (and also from LEP)

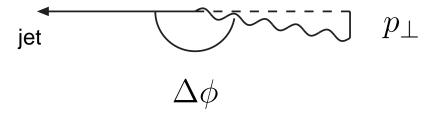
- we have learnt a lot (and still do!) from prompt photon production at HERA (and also from LEP)
- thanks to recent RHIC and Tevatron measurements the reputation of prompt photons in hadronic collisions is rising again:

NLO QCD does a pretty good job where it is expected to do so!

- we have learnt a lot (and still do!) from prompt photon production at HERA (and also from LEP)
- thanks to recent RHIC and Tevatron measurements the reputation of prompt photons in hadronic collisions is rising again:
 - NLO QCD does a pretty good job where it is expected to do so!
- very recent D0 data on photon+jet show interesting features

- we have learnt a lot (and still do!) from prompt photon production at HERA (and also from LEP)
- thanks to recent RHIC and Tevatron measurements the reputation of prompt photons in hadronic collisions is rising again:
 - NLO QCD does a pretty good job where it is expected to do so!
- very recent D0 data on photon+jet show interesting features
- photons will play a crucial role at the LHC and the ILC (resp. PLC, hopefully!)

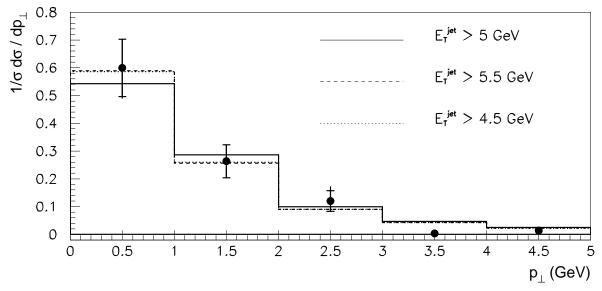
additional slides

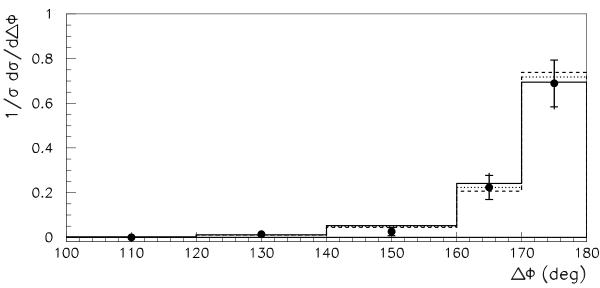

EPHOX compared to **ZEUS** data

study of intrinsic $\langle k_T \rangle$ (parton transverse momenta in proton)

 $\langle k_T \rangle$ - sensitive observables:

 p_{\perp} photon momentum component \perp to jet direction


 $\Delta\phi$ azimuthal acollinearity between photon and jet



ZEUS:

to suppress contributions to $\langle k_T \rangle$ from resolved photon: $x_{\gamma}^{obs} > 0.9$ normalized cross sections to minimize calibration uncertainties

ZEUS data vs Ephox

NLO describes data w without extra $\langle k_T \rangle$

observable x^p, x^{γ}

$$x_{obs}^{p} = \frac{p_T e^{\eta} + p_T^{jet} e^{\eta^{jet}}}{2E^p}$$

$$x_{obs}^{\gamma} = \frac{p_T e^{-\eta} + p_T^{jet} e^{-\eta^{jet}}}{2E^{\gamma}}$$

$$x_{LL}^{p,\gamma} = \frac{p_T \left(e^{\pm \eta} + e^{\pm \eta^{jet}}\right)}{2E^{p,\gamma}}$$