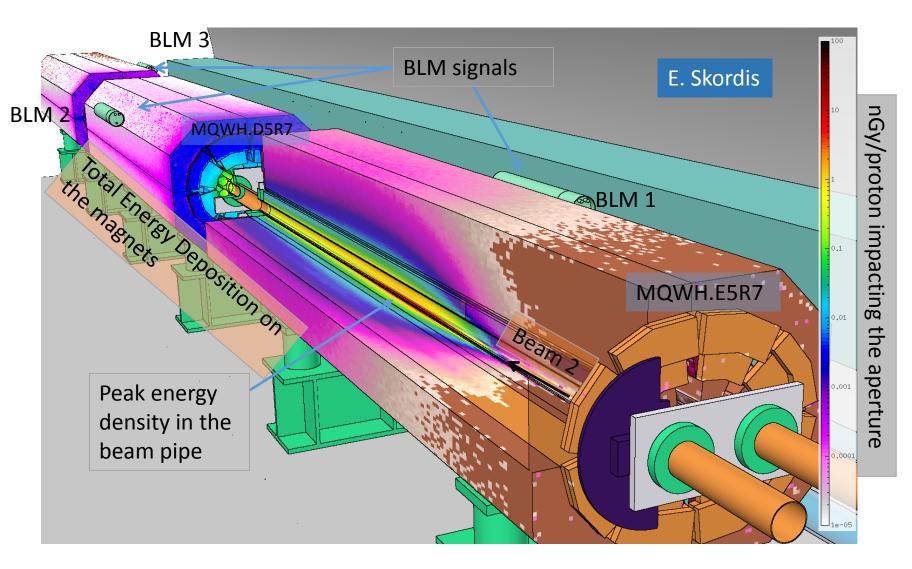

BLM thresholds for MQW magnets

V. Raginel, B. Auchmann, D. Wollmann

MQW normal conducting quadrupole magnet

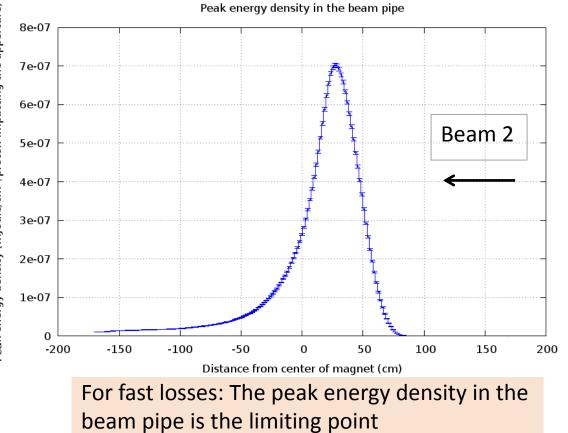


- Position : Cleaning Section IR3 and IR7, Q4 and Q5 consist of a group of 6 MQW.
 High radiation level (collimation system) not compatible with superconducting magnets
- Two Apertures in common yoke due to limited space in the tunnel
- Group of 6 magnet: 5 MQWA, 1 MQWB

Damage Limits of MQWs

- Fast Losses limit from TT40 Experiment (1.32 ×10¹² protons @450 GeV,~500 °C) used as input for the Setup Beam Flag => ΔE = 1.9 kJ/cm3
- Steady-state Losses limit given by the cooling power of the coils, Coils Temperature < 65 °C (Thermo-switch to protect the coils)</p>

BLM Threshold losses scenario



- Vertical orbit bump on the lower part of the beam pipe
- Beam Energy 3.5 TeV
- Maximum deflection to the lower vertical beam aperture:
 - 26 mm

- about 1 meter upstream the centre of MQWH.E5R7

FLUKA Results

Fast Losses (beam pipe)

Steady-state Losses (whole magnet)

MAGNET	MQWH. C5R7	MQWH. D5R7	MQWH. E5R7
Total Energy deposition (nJoule/ proton)	7	13	42
			Beam 2
BLM	3	2	1
Signal (10 ⁻¹⁴ Gy /proton)	1.6	5.6	7.5

E. Skordis

All values are normalised per proton impacting the beam pipe

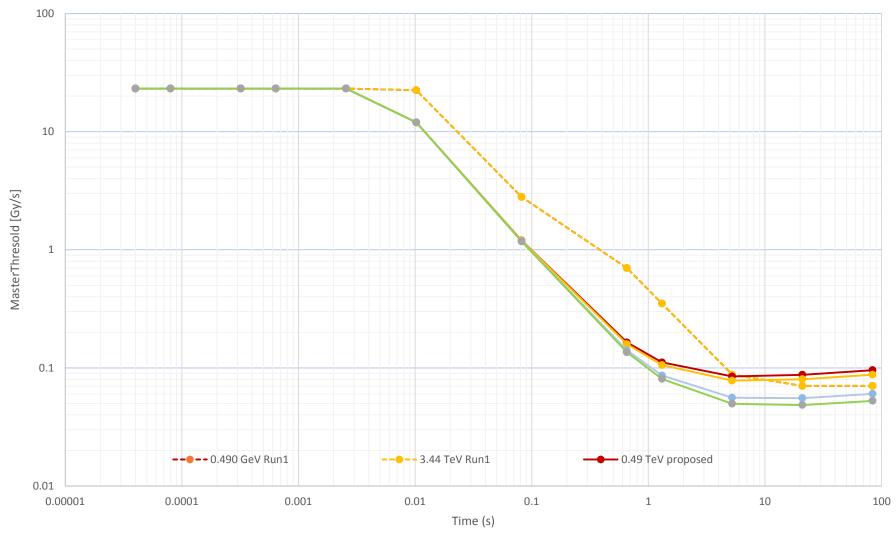
Fast losses on vacuum pipe at 3.5 TeV

Energy Threshold = 1.9 kJ/cm³ (from TT40 damage experiment)

Peak Energy Deposition = 7.2×10⁻¹⁰ J/cm³/p+

Maximum allowed proton lost @3.5 TeV = 2.64×10^{12} p+

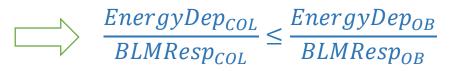
Steady-state losses at 3.5 TeV, cooling limitation


Coils Temperature interlocked at 65°C

Water Flow (Q)*	22I/min		
Water Temperature*	20 to 30 °C		
Max allowed ΔT Water	35 °C		
Max Power evacuated $P_{cool} = Cp Q \rho \Delta T$	53.6 kW		
Nominal Magnet Current	360 A		
Ohmic Losses P _{Ohm} =R * I ²	4.8 kW		
Energy Deposition whole magnet E _{dep}	42 nJ/p+		
Max. allowed loss rate (P _{cool} - P _{ohm})/E _{dep}	1.17 × 10 ¹² p+/s		

* Operational values confirmed by D. Tommasini and P. Thonet

BLM Master Thresholds


MasterThreshold= nMaxProton/ Time × BLM response

BLM Threshold Working Group meeting, 31/03/2015

Losses induced by collimation

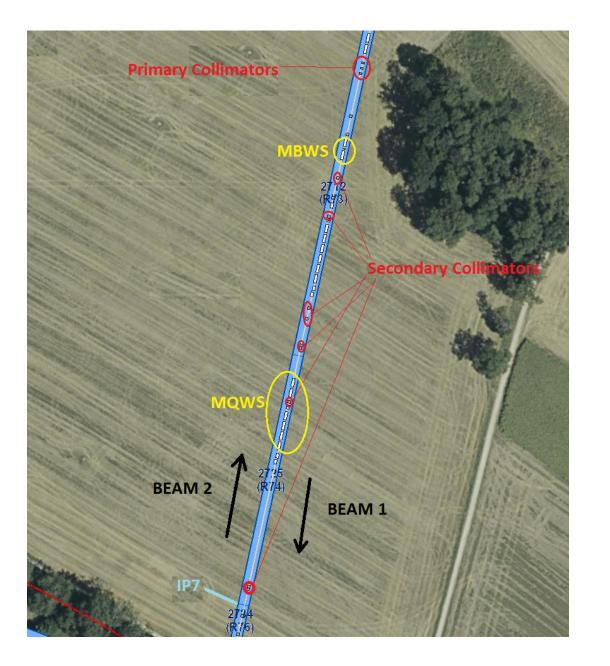
Are we safe with the proposed threshold in case of collimation losses + orbit bump?

 $3.69 \times 10^{14} GeV/Gy < 1.45 \times 10^{15} GeV/Gy$

For the same BLM signal's amplitude, the energy deposition into MQWs is at least 3 time less for collimation losses than for orbit bump losses.

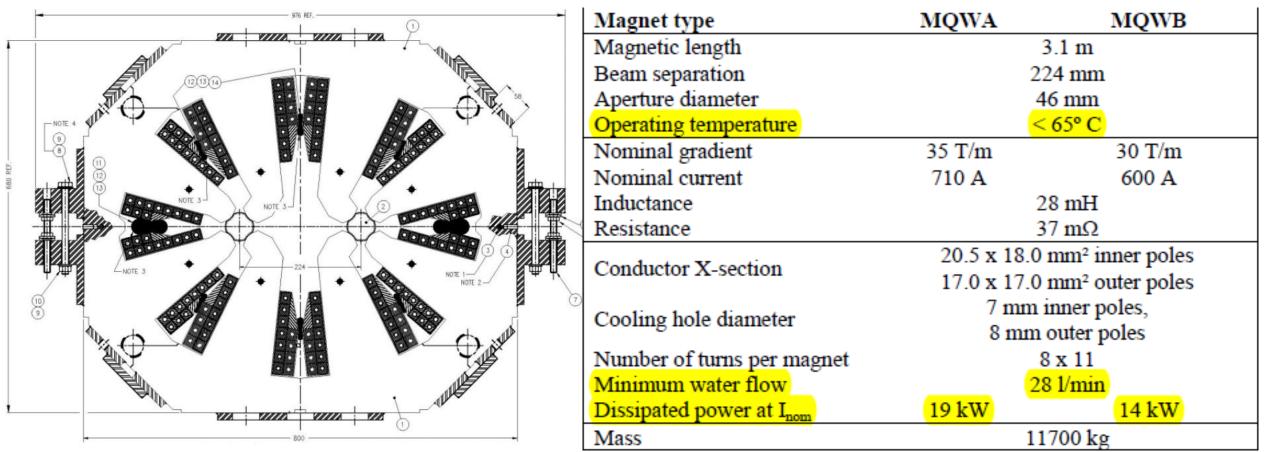
MQW thresholds ready to be implemented

New Thresholds proposed for the MQWs derived from an orbit bump scenario


> Short running sum: no beam energy dependency

Long running sum: beam energy dependency
– Ohmic losses are proportional to I².

Thresholds safe in presence of background (collimation losses)


SPARE SLIDES

BLM Threshold Working Group meeting, 31/03/2015

IP7 Configuration

MQW main parameters

Cross-section of the MQW twin aperture normal conducting matching quadrupole.

BLM Thresholds calculation

> 32 Energy level (from 0.245 TeV to 7.86 TeV)

>Extrapolation from 3.5 TeV values

12 Integration steps (40 us to 83.9 s)

>Interpolation between short and steady-state losses

BLM Thresholds vs. Energy

Values for all Energies are extrapolated from 3.5 TeV values

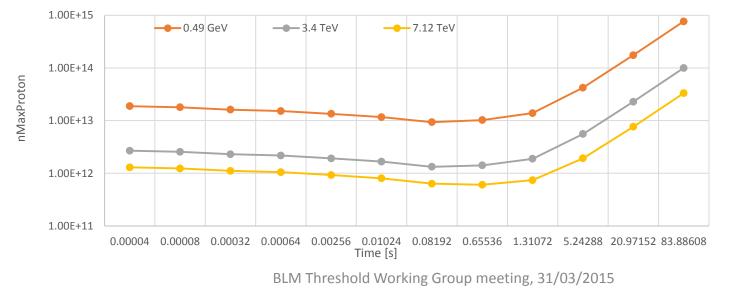
> BLM response linearly extrapolated (e.g. 7.48E-14 Gy/p+)

> Fast losses Limit (number of protons)

 $nShort(E_{beam}) = nShort_{3.5TeV} \times \frac{3.5}{E_{beam}}$

> Steady-state Limit (number of protons)

 $nLong(E_{beam}) = \frac{\left(P_{Cool} - P_{Ohm(3.5TeV)} \times \left(\frac{E_{beam}}{3.5}\right)^{2}\right)}{\left(E_{Dep(3.5TeV)} \times \frac{E_{beam}}{3.5}\right)} \times Time$


BLM Thresholds vs. Integration Time

Logarithm Interpolation between fast and steady state losses

 $\succ TimeWeight = \frac{(\log(Time) - \log(40 \ \mu s))}{(\log(83 \ s) - \log(40 \ \mu s))}$

Max. allowed losses

 $nMaxProton = ((1 - TimeWeight) \times nShort) + (TimeWeight \times nLong)$

Losses induced by collimation

ORBIT BUMP				
Magnets	Energy Deposition [GeV/p+]		BLM signal [Gy/p+]	[GeV/Gy]
MQWHE5R7		262	7.50E-14	3.50E+15
MQWHD5R7		81	5.60E-14	1.45E+15
MQWHC5R7		44	1.60E-14	2.73E+15

COLLIMATION

@ 4TeV - Quench Test collimator settings

Magnets	Energy Deposition [GeV/p+]		BLM signal [Gy/p+]	[GeV/Gy]
MQWHA5R7		23	1.40E-13	1.64E+14
MQWHB5R7		25	9.60E-14	2.60E+14
MQWH5R7		28	1.90E-13	1.47E+14
MQWHC5R7		35	1.30E-13	2.69E+14
MQWHD5R7		44	5.10E-13	8.63E+13
MQWHE5R7		127	3.90E-13	3.26E+14

@ 6.5TeV - Nominal cleaning collimator settings 2012

Magnets	Energy Deposition [GeV/p+]		BLM signal [Gy/p+]	[GeV/Gy]
MQWHA5R7		46	2.28E-13	2.02E+14
MQWHB5R7		54	1.56E-13	3.46E+14
MQWH5R7		58	3.09E-13	1.88E+14
MQWHC5R7		74	2.11E-13	3.50E+14
MQWHD5R7		92	8.29E-13	1.11E+14
MQWHE5R7	2	34	6.34E-13	3.69E+14