
Managing Heterogeneous HTCondor Workloads
(or how I learned to stop worrying and love multicore)

William Strecker-Kellogg <willsk-at-bnl.gov>

HEPiX Fall 2015

Brookhaven National Lab



Support for Multicore Jobs in HTCondor

HEPiX Fall 2015

 Paritionable Slots

 Each machine has one slot with all 

resources

 Jobs request portions of resources 

(CPUs / RAM) from these

 Sliced into dynamic slots

 Matching is done to “parent” slot

 See my Condor Week 2014 talk

 Working well since 2013

 Competition

 Starvation of multicore jobs in direct 

competition with smaller jobs

 “Greedy” scheduling

 E.g. 3 cpus become free->3 single-core 

jobs start

 Defragmentation

 Depth-first filling obviates need for a 

lot of defrag

2

http://research.cs.wisc.edu/htcondor/HTCondorWeek2014/presentations/StreckerKelloggW-Multicore.pdf


ATLAS Configuration

 All farm has one STARTD config

SLOT_TYPE_1=100%

NUM_SLOTS=1

NUM_SLOTS_TYPE_1=1

SLOT_TYPE_1_PARTITIONABLE=True

SlotWeight=Cpus

 Minimal Defragmentation

 Depth-first filling with NEGOTIATOR_POST_JOB_RANK

 Start 2/hr, stop when 10 free CPUs appear

3 HEPiX Fall 2015



Provisioning

 Use Hierarchical Group Quotas

 Partition ATLAS into production / 

analysis

 Partition jobs of different sizes into 

different groups at same level of tree

 Logical divisions along other job-

qualities (length)

 Leaf nodes receive jobs

 Up to site administrators to define

atlas

analysis

prod

himem

single

mcore

short

long

grid

<root>

sw

4



Queues & Quotas

 Quotas on intermediate groups are 

sum(child-quotas)

 Up the tree till the root-node has a quota 

the size of farm

 Jobs are segregated by resource-usage 

profile into different groups

 In ATLAS, Groups are 1-to-1 with Panda 

Queues

One size per-queue

HEPiX Fall 2015



Surplus Sharing

HEPiX Fall 2015

 Surplus sharing is controlled by boolean accept_surplus flag on each queue

 Quotas are normalized in units of SlotWeight (CPUs)

 Groups with flag set to True can take unused slots from their siblings

 Parent groups with flag allow surplus to “flow down” the tree from their siblings to 

their children

 Parent groups without accept_surplus flag constrain surplus-sharing to among their 

children

6



Surplus Sharing

 Scenario: analysis has quota of 

2000 and no accept_surplus; short

and long have a quota of 1000 each 

and accept_surplus on

 short=1600, long=400…possible

 short=1500, long=700…impossible 

(violates analysis quota)

HEPiX Fall 20157



Management of Queues

HEPiX Fall 2015

 We have a solution

1. Database to hold group-tree information and parameters

2. Flask website to manage quotas easily

3. Scripts to inject changes from database into your condor pool

 Available on my github

 Installable as python PIP package or RPM

 Site in production at BNL for the last 3 months

 Demo…

8

https://github.com/fubarwrangler/group-quota


Sharing with Multicore

HEPiX Fall 2015

 Multicore queues can’t have accept-surplus set alongside single-core queues

 Scheduling is greedy, and would require much more defragmentation to work

 Solutions:

 Factor your tree so this never happens?

 This is nice but we can do better!

 Automatically rebalance surplus based on demand

1. Need a way to read demand… this is site-specific

2. Assign parameters to determine “weight” of queues

9



Weight, Demand & Threshold

HEPiX Fall 2015

 Each queue’s “weight” is the size of its jobs

 8 for mcore…

 2 for high-memory…

 Demand is read with a script from PANDA

 This is the only site-specific code that needs to be written

 Could be a simple condor_q lookup of Idle jobs

 Threshold is what average demand for last hour must be above in order for 

queue to be considered “full”

 Adjust to best fit how “fast” each queue moves vs. how big the jobs are

10



Balancing Algorithm

AlgorithmAssign Variables

HEPiX Fall 2015

 Depth-first traversal

 For each equal-level sibling-group

 Set accept_surplus to TRUE for only all

the highest-weighted queues that have

demand

 Weights of intermediate groups

 avg(wchildren)

 Demand of intermediate groups

 sum(dchildren)

11



Balancing: Weight

HEPiX Fall 2015

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8/50

1/5

2/100

1/600 1/2001/150

1/1

2/800

3/300

3/1105

<weight>/<threshold>

Sibling Groups

12



Balancing: All Full

HEPiX Fall 2015

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2Surplus ON

13



Balancing: No mc/hi

HEPiX Fall 2015

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2Surplus ON

14



Balancing: No prod

HEPiX Fall 2015

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2Surplus ON

15



Balancing: No atlas

HEPiX Fall 2015

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2Surplus ON

16



Results

Wasted Slots

HEPiX Fall 201517



Results & Context

 Multicore is ready to take slack from 
other production queues

 Spotty analysis-demand the past few 
months has allowed many millions of 
CPU-hours to go unwasted

 If all ATLAS has a lull in demand, OSG 
jobs can fill the farm

 Who is this useful for?
 Algorithm works for any tree

 Extensible beyond ATLAS where 
work is structured outside of 
batch system

 A multi-tenant service provide 
with a hierarchy of priorities
 Really a problem of efficient 

provisioning, not scheduling

 Constraints
 Workflow defined outside of 

HTCondor

 Must map job-species to groups

HEPiX Fall 201518



The End

Thank You!

Questions? Comments?

HEPiX Fall 201519


