η Photoproduction off Neutrons

Lilian Witthauer
CHIPP Annual Plenary Meeting 2015

Château de Bossey June $29^{\text {th }} 2015$

Outline

(1) Motivation

Structure of the Nucleon
Former Results
Complete Experiment
(2) Experiment

MAMI and ELSA Accelerators
A2 and CBELSA/TAPS Setup
(3) Analysis

Concept
Background Suppression
(4) Results

Unpolarised Cross Sections
Double Polarisation Observable E
(5) Summary

QCD

- QCD: fundamental theory of strong interaction
- pQCD successful at high energies
- Low energies: PQCD not applicable
- Phenomenological descriptions: Quark Models
- Numerical methods: Lattice QCD

confinement

S. Bethke, arXiv:hep-ex/0606035

Structure of the Nucleon

Mismatch between experiment and models:

- Ordering of states, missing resonances!
- Model effective dof's or experimental bias?

Experimental Bias

- Most results only $\pi \mathrm{N}$ scattering: photoproduction

	PDG 2010	PDG 2012
$\mathrm{N}(1860) 5 / 2^{+}$		$\star \star$
$\mathrm{N}(1875) 3 / 2^{-}$		$\star \star \star$
$\mathrm{N}(1880) 1 / 2^{+}$		$\star \star$
$\mathrm{N}(1895) 1 / 2^{-}$		$\star \star$
$\mathrm{N}(1900) 3 / 2^{+}$	$\star \star$	$\star \star \star$
$\mathrm{N}(2060) 5 / 2^{-}$		$\star \star$
$\mathrm{N}(2160) 3 / 2^{-}$		$\star \star$
$\Delta(1940) 3 / 2^{-}$	\star	$\star \star$

A. V. Anisovich et al., Eur. Phys. J. A 48 (2012) 15

Experimental Bias

- Most results only $\pi \mathrm{N}$ scattering: photoproduction
- Elm. excitation isospin dependent: neutron

Experimental Bias

- Most results only $\pi \mathrm{N}$ scattering: photoproduction
- Elm. excitation isospin dependent: neutron
- Resonances broad and overlapping: η-meson

B. Krusche, arXiv:1110.0192

Former Results $\gamma+\mathbf{d} \rightarrow \eta+\mathbf{n}+(\mathbf{p})$

narrow structure:

$$
\mathrm{W}=1.66 \mathrm{GeV}
$$

ELSA, I.Jaeglé et al. Eur. Phys. J A47 (2011) 89

- Seen by GRAAL, LNS Sendai and CBELSA/TAPS collaborations
- Unusual properties compared to other nucleon resonances ($\Gamma \sim 150 \mathrm{MeV}$)
- Various explanations

Various Explanations

Interference of known resonances:

- BnGa: interference effects from $S_{11}(1535)$ and $S_{11}(1650)$ (Anisovich et al.)
- Giessen Model: Interference effect from $S_{11}(1650)$ and P_{11} (1710) (Shklyar et al.)
- η-MAID: D_{15} (1675) resonance (Chiang et al.)

Coupled channel effects:

- s-wave model: K,$K \Sigma$ loops (Döring et al.)

New narrow resonance:

- Reggeized η-MAID: narrow P_{11} (1670) (Fix et al.)
- Chiral quark soliton model: narrow P_{11} state, $\mathrm{N}(1680)$ (Diakonov et al.)
$>$ Multipole analysis needed to identify quantum numbers!

Complete Experiment

Model independent multipole analysis (Chiang \& Tabakin):

- 4 single observables: σ_{0}, Σ, T, P
- 4 carefully chosen double polarisation observables

$$
E=\frac{\sigma_{1 / 2}-\sigma_{3 / 2}}{\sigma_{1 / 2}+\sigma_{3 / 2}}=\frac{\sigma_{1 / 2}-\sigma_{3 / 2}}{2 \sigma_{0}}
$$

circularly polarised photons

longitudinally polarised target

MAinzer MIcrotron (Mainz)

ELectron Stretcher Accelerator (Bonn)

Experimental Setup

A2 @ MAMI

- Continuous beam
- $E_{\gamma} \leq 1.6 \mathrm{GeV}$
- CB: 672 NaI
- TAPS: $\mathrm{BaF}_{2} \& \mathrm{PbWO}_{4}$
- PID

TAPS

CBELSA/TAPS @ ELSA

- Quasi-continuous beam
- $E_{\gamma} \leq 3.2 \mathrm{GeV}$
- CBB: 1230 Csl
- MiniTAPS: $216 \mathrm{BaF}_{2}$
- Inner Detector

Bremsstrahlung Tagging

- longitudinal polarised electrons
- Møller radiator
- circularly polarised photons

Targets

Neutron Targets

- light nuclei: deuterium, ${ }^{3} \mathrm{He}$

Polarised Target

- deuterated Butanol

Challenges of Quasi-Free Nucleons (Bound)

Detection of recoil nucleons:

- neutrons: 10-30\% efficiency
- deposited energy \neq kinetic energy
- but: kinematics completely defined without measuring energy: use only angular information

Fermi Motion:

- momentum of the initial state nucleon not known
- smears out structures
- solution: use final state particles

FSI:

- meson-nucleon, nucleon-nucleon
- compare quasi-free to free proton results!

Basic Analysis Concept

- neutral and charged particles: use information from charge sensitive detectors
- event classes:

	$\sigma_{\mathbf{p}}$ $\gamma p \rightarrow \eta p$	$\sigma_{\mathbf{n}}$ $\gamma n \rightarrow \eta n$
$\eta \rightarrow 2 \gamma$	$2 n \& 1 c$	$3 n$
$\eta \rightarrow 3 \pi^{0} \rightarrow 6 \gamma$	$6 n \& 1 c$	$7 n$

- best solution from χ^{2}-test: for events with >2 neutral hits to find η and recoil neutron

Kinematical Cuts

Missing Mass:

$$
\Delta M=\left|P_{\text {Beam }}+P_{N}^{\prime}-P_{\eta}\right|-m_{N}
$$

Invariant Mass:

$$
M_{\gamma \gamma}=\sqrt{E_{\gamma_{1}} E_{\gamma_{1}}\left(1-\cos \psi_{12}\right)}
$$

Other Identification Possibilities (TAPS)

Pulse Shape Analysis:

ToF versus energy:

ΔE versus $E(C B / T A P S)$

Extraction of Unpolarised Cross Sections

$$
\left.\frac{d \sigma}{d \Omega}\right|_{\text {unpol }}\left(E, \cos \theta_{\eta}^{*}\right)=\frac{N\left(E, \cos \theta_{\eta}^{*}\right)}{\epsilon\left(E, \cos \theta_{\eta}^{*}\right) \cdot N_{\gamma}(E) \cdot n_{t} \cdot \Gamma_{i} / \Gamma \cdot \Delta \Omega}
$$

- yields: integrate invariant mass
- photon flux
- detection efficiency: Geant, nucleon detection efficiency correction (hydrogen data)
- factors: target density, branching ratio, solid angle

Extraction of Observable \mathbf{E}

$$
E=\frac{\sigma_{1 / 2}-\sigma_{3 / 2}}{\sigma_{1 / 2}+\sigma_{3 / 2}}=\frac{1}{P_{\gamma} \cdot P_{T}} \cdot \frac{N_{1 / 2}-N_{3 / 2}}{N_{1 / 2}+N_{3 / 2}+2 N_{C}}
$$

Carbon Subtraction: Missing Mass

Cross Sections ${ }^{3} \mathrm{He}(\mathrm{A} 2)$ and LD_{2} (CBELSA/TAPS)

- Nucleon system with different momentum distribution and different neutron/proton ratio
- Exclude nuclear effects (re-scattering of mesons, FSI)
- Narrow structure no artefact!

Polarisation Observable E (CBELSA/TAPS \& A2)

Polarisation Observable E - Neutron (A2)

- Model predictions by BnGa: constructive interference of S_{11} (1535) and $\mathrm{S}_{11}(1650)$
\rightarrow change of sign of the electromagnetic coupling of the $\mathrm{S}_{11}(1650)$ resonance for the neutron \rightarrow contradictory to Quark Model descriptions!

Summary

Unpolarised cross sections on ${ }^{3} \mathrm{He}$ and LD_{2} :

- Confirmed narrow structure
- Exclude nuclear effects
- ${ }^{3}$ He published in PRL and EPJA
- LD_{2} ready for publication

Double polarisation observable \mathbf{E} for quasi-free $\mathbf{p} \& \mathbf{n}$:

- Narrow structure only visible in $\sigma_{1 / 2} \rightarrow \mathrm{~S}_{11}$ or P_{11} state
- Ready for publication

Thanks for your attention!

A2 Experiment

A2 Frozen Spin Target

CBELSA/TAPS Experiment

CBELSA/TAPS: Inner Detector

Influence of Photoproduction

	PDG 2010	PDG 2012
$\mathrm{N}(1860) 5 / 2^{+}$		$\star \star$
$\mathrm{N}(1875) 3 / 2^{-}$		$\star \star \star$
$\mathrm{N}(1880) 1 / 2^{+}$		$\star \star$
$\mathrm{N}(1895) 1 / 2^{-}$		$\star \star$
$\mathrm{N}(1900) 3 / 2^{+}$	$\star \star$	$\star \star \star$
$\mathrm{N}(2060) 5 / 2^{-}$		$\star \star$
$\mathrm{N}(2160) 3 / 2^{-}$		$\star \star$
$\Delta(1940) 3 / 2^{-}$	\star	$\star \star$

**** Existence is certain, and properties are at least fairly well explored.
*** Existence is very likely but further confirmation of quantum numbers and branching fractions is required.
** Evidence of existence is only fair.

* Evidence of existence is poor.

Quark Models: Effective degree of freedom

> 3 equivalent Constituent Quarks

Quark-Diquark
 ->2 dof
 less states

Flux Tubes
->more states via rotation or vibration

Models

- SAID: Database for electro and photoproduction, partial wave analysis with energy independent fits
- MAID: unitary isobar model, Partial wave analysis of SAID and additional data. Uses Breit-Wigner distributions and background contributions as Born term and vector meson exchange term in t-channel (effective Lagrangians)
- BnGa: Coupled channel approach. Simultaneous fitting of different channels and observables. K-matrix parametrisation at low energies, relativistic Breit-Wigner at energies >2.2 GeV . Non-resonant terms from t- and u-channel amplitudes.

Isospin Filter

Narrow Structure: Models

- etaMAID:
D_{15} (1675) resonance $>\Gamma_{\eta N} / \Gamma_{\text {tot }}=17 \%$ (PDG: $\Gamma_{\eta N} / \Gamma \simeq 0-1 \%$)
(L.Tiator, NSTAR2005)

- Chiral Soliton Model: non-strange member of the baryon antidecuplet: P_{11}
(D.Diakonov et al., arXiv:hep-ph/9703373v2) $u u d d \bar{s}$

Narrow Structure: Fit with BnGa

Narrow $P_{11}(1685)$:

S_{11} (1650) Interference :

sign change of elm.
$A_{1 / 2}$ coupling of $S_{11}(1650)$

Polarisation Observables

photon		target			recoil			target + recoil		
			y	z	-	-	-	X	y	Z
		-	-	-	x^{\prime}	y^{\prime}	z^{\prime}	x^{\prime}	y^{\prime}	z^{\prime}
-	σ_{0}	-	T	-	-	P	-	$\mathrm{T}_{x^{\prime}}$	$\mathrm{T}_{y^{\prime}}$	$\mathrm{T}_{z^{\prime}}$
linearly	Σ	H	-P	-G	$\mathrm{O}_{x^{\prime}}$	-T	$\mathrm{O}_{z^{\prime}}$	-	-	-
circularly	-	F	-	-E	$-C^{\prime}$	-	$-C_{z^{\prime}}$	-	-	-

Polarisation Observables

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{d \sigma_{0}}{d \Omega} \cdot\left\{1-P_{\text {lin }} \Sigma \cos 2 \phi\right. \\
& +P_{x} \cdot\left[-P_{\text {lin }} H \sin 2 \phi+P_{\text {circ }} F\right] \\
& -P_{y} \cdot\left[+P_{\text {lin }} P \cos 2 \phi-P_{\text {circ }} T\right] \\
& \left.-P_{z} \cdot\left[-P_{\text {lin }} G \sin 2 \phi-P_{\text {circ }} E\right]\right\}
\end{aligned}
$$

Data Overview

	beamtime	$\begin{gathered} \text { target } \\ \text { material } \end{gathered}$	length [cm]	$\begin{gathered} \hline \mathrm{E}_{e^{-}} \\ {[\mathrm{GeV}]} \\ \hline \end{gathered}$	$\begin{gathered} \text { collimator } \\ {[\mathrm{mm}]} \\ \hline \end{gathered}$	photon pol.	$\begin{aligned} & \hline \hline \text { current } \\ & {[\mathrm{nA}]} \\ & \hline \end{aligned}$	trigger
	2008	LD_{2}	5.258	2.35	4	circular	0.32	eta3
				2.35	7	circular	0.32	eta3
				2.35	7	circular	0.32	eta3nC
	2008	LH_{2}	5.262	2.35		circular	0.19	trig42
	02.03.-22.04.2011	dbutanol	1.88	2.35	4	circular	0.70	eta4
	08.06.-21.06.2011	dbutanol	1.88	2.35	4	circular	0.70	eta4
	04.12.-10.12.2011	carbon	1.88	2.35	4	circular	0.70	eta4
	28.10-17.11.2008	${ }^{3} \mathrm{He}$	5.08	1.508	4	circular	8.0	$\mathrm{M} 2+300 \mathrm{MeV}$
	31.03-30.04.2009	LH_{2}	10.0	1.558	4	circular	10.0	$\mathrm{M} 3+360 \mathrm{MeV}$
	08.05-25.05.2009	LD_{2}	3.02	1.558	4	circular	4.5	$\mathrm{M} 2+300 \mathrm{MeV}$
>	15.07.-24.07.2013	dbutanol	2.0	1.557	2	circular	8.3	$\mathrm{M} 2+300 \mathrm{MeV}$
N	23.02.-28.02.2014	dbutanol	2.0	1.557	2	circular	9.0-10.0	$\mathrm{M} 2+250 \mathrm{MeV}$
	28.02.-03.03.2014	carbon	2.0	1.557	2	circular	9.0	$\mathrm{M} 2+250 \mathrm{MeV}$
	24.03.-30.03.2015	dbutanol	2.0	1.557	2	circular	10.0	$\mathrm{M} 2+250 \mathrm{MeV}$

\mathbf{W}_{B} versus \mathbf{W}_{R}

Cross Sections as function of...

- $\mathbf{W}_{\mathbf{B}}\left(\mathbf{E}_{\gamma}\right): \sqrt{s}$ calculated with 4-momenta of initial state particles:

$$
W_{B}^{2}=\left(P_{\gamma}+P_{N, i}\right)^{2}=2 E_{\gamma} m_{N}+m_{N}^{2}
$$

$>$ Structures are smeared out because of Fermi motion

\mathbf{W}_{B} versus \mathbf{W}_{R}

Cross Sections as function of...

- $\mathbf{W}_{\mathbf{B}}\left(\mathbf{E}_{\gamma}\right): \sqrt{s}$ calculated with 4-momenta of initial state particles:

$$
W_{B}^{2}=\left(P_{\gamma}+P_{N, i}\right)^{2}=2 E_{\gamma} m_{N}+m_{N}^{2}
$$

$>$ Structures are smeared out because of Fermi motion

- $\mathbf{W}_{\mathbf{R}}: \sqrt{s}$ calculated with measured 4-momenta of final state particles (η, participant nucleon):

$$
W_{R}^{2}=\left(P_{\eta}+P_{N, f}\right)^{2}
$$

$>$ No effects from Fermi motion, but experimental resolution for recoil nucleon

Corrections - Monte Carlo Simulation

Requires Event Generator (Pluto,GSI)

- Implementation of Fermi motion
- Fermi Plugin
- Used by other collaborations

Nucleon Detection Efficiency

- Hard to simulate

- Different interaction mechanisms than photons
- Deposited energy \neq total energy
- Recalculate energy with kinematical considerations
- Additional corrections using hydrogen data.

Cross Sections Deuterium (CBELSA/TAPS)

$$
\gamma \mathbf{p} \rightarrow \eta \mathbf{p}
$$

$$
\gamma \mathbf{n} \rightarrow \eta \mathbf{n}
$$

- Consistent with A2 data
- Deviation from old CBELSA/TAPS data

Extracted Parameters

	$W[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	$b_{\eta} A_{1 / 2}^{n}$ $\left[10^{-3} \mathrm{GeV}^{-1 / 2}\right]$
LD_{2} (D. Werthmueller)	1670 ± 1	29 ± 3	12.3 ± 0.8
LD_{2} (this work)	1676 ± 4	30 ± 3	15.3 ± 1.8
${ }^{3} \mathrm{He}$ (this work)	1675 ± 2	46 ± 8	11.9 ± 1.2

Differential Cross Sections LD_{2}, Proton (Bonn)

Differential Cross Sections LD $_{2}$, Neutron (Bonn)

Fermi Momentum ${ }^{3} \mathrm{He}(\mathrm{A} 2)$

$$
\vec{p}_{F}=\vec{p}_{P}^{S S}=\vec{p}_{P}^{F S}+\vec{p}_{\eta}-\vec{p}_{\gamma}
$$

- $p_{s}<300 \mathrm{MeV}$: Long range interactions ratio $\sim N / Z=0.5$
- $p_{s}>300 \mathrm{MeV}$: Ratio ~ 1 as for deuterium, SRC, high Fermi momenta are produced by isospin singlet pairs!
- Dedicated experiments are planned at JLAB!

$\sigma_{1 / 2}$ Neutron

$\sigma_{3 / 2}$ Neutron

$\sigma_{1 / 2}$ Proton

$\sigma_{3 / 2}$ Proton

