η Photoproduction off Neutrons

Lilian Witthauer

CHIPP Annual Plenary Meeting 2015

Château de Bossey June 29th 2015

Outline	Motivation	Experiment	Analysis	Results	Summary
•	0000000	000000	0000000	000	O
• • • •					

Outline

1 Motivation

Structure of the Nucleon Former Results Complete Experiment

2 Experiment

MAMI and ELSA Accelerators A2 and CBELSA/TAPS Setup

3 Analysis

Concept Background Suppression

4 Results

Unpolarised Cross Sections Double Polarisation Observable E

Outline	Motivation	Experiment	Analysis	Results	Summary
O	•0000000	000000	0000000	000	O
QCD					

- QCD: fundamental theory of strong interaction
- pQCD successful at high energies
- Low energies: pQCD not applicable
- Phenomenological descriptions: Quark Models
- Numerical methods: Lattice QCD

Outline	Motivation	Experiment	Analysis	Results	Summary
0	0000000	000000	0000000	000	0

Structure of the Nucleon

Mismatch between experiment and models:

- Ordering of states, missing resonances!
- Model effective dof's or experimental bias?

• Most results only πN scattering: photoproduction

	PDG 2010	PDG 2012
$N(1860)5/2^+$		**
$N(1875)3/2^{-}$		* * *
$N(1880)1/2^+$		**
$N(1895)1/2^{-}$		**
$N(1900)3/2^+$	**	* * *
$N(2060)5/2^{-}$		**
$N(2160)3/2^{-}$		**
$\Delta(1940)3/2^{-}$	*	**

A. V. Anisovich et al., Eur. Phys. J. A 48 (2012) 15

- Most results only πN scattering: photoproduction
- Elm. excitation isospin dependent: neutron

Outline	Motivation	Experiment	Analysis	Results	Summary
O	00000000	000000	0000000		O
Experi	mental Bia	as			

- Most results only πN scattering: photoproduction
- Elm. excitation isospin dependent: neutron
- Resonances broad and overlapping: η-meson

Outline	Motivation	Experiment	Analysis	Results	Summary
0	○○○○●●○○	000000	0000000		O

Former Results $\gamma + \mathbf{d} \rightarrow \eta + \mathbf{n} + (\mathbf{p})$

narrow structure: W = 1.66 GeV

- Seen by GRAAL, LNS Sendai and CBELSA/TAPS collaborations
- Unusual properties compared to other nucleon resonances $(\Gamma \sim 150 \text{ MeV})$
- Various explanations

Outline	Motivation	Experiment	Analysis	Results	Summary
0	00000000	000000	0000000	000	0

Various Explanations

Interference of known resonances:

- ► BnGa: interference effects from S₁₁(1535) and S₁₁(1650) (Anisovich et al.)
- Giessen Model: Interference effect from $S_{11}(1650)$ and $P_{11}(1710)$ (Shklyar et al.)
- η -MAID: $D_{15}(1675)$ resonance (Chiang et al.)

Coupled channel effects:

s-wave model: KΛ, KΣ loops (Döring et al.)

New narrow resonance:

- Reggeized η -MAID: narrow $P_{11}(1670)$ (Fix et al.)
- Chiral quark soliton model: narrow P₁₁ state, N(1680) (Diakonov et al.)

> Multipole analysis needed to identify quantum numbers!

Outline	Motivation	Experiment	Analysis	Results	Summary
0	0000000	000000	0000000	000	0

Complete Experiment

Model independent multipole analysis (Chiang & Tabakin):

- 4 single observables: σ_0 , Σ , T, P
- 4 carefully chosen double polarisation observables

5	
$\sigma_{1/2}$	σ _{3/2}

circularly polarised photons + longitudinally polarised target

η Photoproduction off Neutrons

MAinzer MIcrotron (Mainz)

Outline	Motivation	Experiment	Analysis	Results	Summary
O	0000000	000000	0000000	000	O
	. Stratabor		or (Donn)		

Lilian Witthauer

Outline	Motivation	Experiment	Analysis	Results	Summary
0	0000000	00000	0000000	000	0

Experimental Setup

A2 @ MAMI

- Continuous beam
- $E_{\gamma} \leq 1.6 \text{ GeV}$
- CB: 672 Nal
- TAPS: BaF₂ & PbWO₄
- PID

CBELSA/TAPS @ ELSA

- Quasi-continuous beam
- $E_{\gamma} \leq 3.2 \text{ GeV}$
- CBB: 1230 Csl
- MiniTAPS: 216 BaF₂
- Inner Detector

Outline	Motivation	Experiment	Analysis	Results	Summary
0	00000000		0000000	000	O
Targets					

Neutron Targets

 light nuclei: deuterium,³He

Polarised Target

deuterated Butanol

P P P P D-C-C-C-C-O-D D D D D

Outline	Motivation	Experiment	Analysis	Results	Summary
0	0000000	00000	000000	000	0

Challenges of Quasi-Free Nucleons (Bound)

Detection of recoil nucleons:

- neutrons: 10-30% efficiency
- deposited energy \neq kinetic energy
- but: kinematics completely defined without measuring energy: use only angular information

Fermi Motion:

- momentum of the initial state nucleon not known
- smears out structures
- solution: use final state particles

FSI:

- meson-nucleon, nucleon-nucleon
- compare quasi-free to free proton results!

Outline	Motivation	Experiment	Analysis	Results	Summary
O	0000000	000000	●○○○○○○		O

Basic Analysis Concept

neutral and charged particles:

use information from charge sensitive detectors

event classes:

$$\begin{array}{c|c} \sigma_{\mathbf{p}} & \sigma_{\mathbf{n}} \\ \gamma p \to \eta p & \gamma n \to \eta n \end{array}$$

$$\eta \to 2\gamma & 2n \& 1c & 3n \\ \eta \to 3\pi^0 \to 6\gamma & 6n \& 1c & 7n \end{array}$$

• best solution from χ^2 -test:

for events with >2 neutral hits to find η and recoil neutron

Outline	Motivation	Experiment	Analysis	Results	Summary
0	0000000	000000	000000	000	0

Kinematical Cuts

Missing Mass:

$$\Delta M = |P_{Beam} + P_N^I - P_\eta| - m_N$$

ToF [ns/m]

 η Photoproduction off Neutrons

Outline	Motivation	Experiment	Analysis	Results	Summary
O	0000000	000000		000	O

Outline	Motivation	Experiment	Analysis	Results	Summary
0	0000000	000000	0000000	000	0

Extraction of Unpolarised Cross Sections

$$\frac{d\sigma}{d\Omega}\Big|_{unpol} \left(E, \cos\theta_{\eta}^{*}\right) = \frac{N(E, \cos\theta_{\eta}^{*})}{\epsilon(E, \cos\theta_{\eta}^{*}) \cdot N_{\gamma}(E) \cdot n_{t} \cdot \Gamma_{i}/\Gamma \cdot \Delta\Omega}$$

► yields:

integrate invariant mass

- photon flux
- detection efficiency: Geant, nucleon detection efficiency correction (hydrogen data)
- factors: target density, branching ratio, solid angle

Invariant Mass:

Outline	Motivation	Experiment	Analysis	Results	Summary
0	0000000	000000	0000000	000	0

Extraction of Observable E

$$E = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{1}{P_{\gamma} \cdot P_{T}} \cdot \frac{N_{1/2} - N_{3/2}}{N_{1/2} + N_{3/2} + 2N_{C}}$$

Carbon Subtraction: Missing Mass

 η Photoproduction off Neutrons

Cross Sections ³He (A2) and LD₂ (CBELSA/TAPS)

- Nucleon system with different momentum distribution and different neutron/proton ratio
- Exclude nuclear effects (re-scattering of mesons, FSI)
- Narrow structure no artefact!

 Model predictions by BnGa: constructive interference of S₁₁(1535) and S₁₁(1650)

 \rightarrow change of sign of the electromagnetic coupling of the

 $S_{11}(1650)$ resonance for the neutron

 \rightarrow contradictory to Quark Model descriptions!

Outline	Motivation	Experiment	Analysis	Results	Summary
O	00000000	000000	0000000		•
Sumn	nary				

Unpolarised cross sections on ³He and LD₂:

- Confirmed narrow structure
- Exclude nuclear effects
- ³He published in PRL and EPJA
- LD₂ ready for publication

Double polarisation observable E for quasi-free p & n:

- Narrow structure only visible in $\sigma_{1/2} \rightarrow S_{11}$ or P_{11} state
- Ready for publication

Thanks for your attention!

A2 Experiment

A2 Frozen Spin Target

CBELSA/TAPS Experiment

CBELSA/TAPS: Inner Detector

Influence of Photoproduction

	PDG 2010	PDG 2012
$N(1860)5/2^+$		**
$N(1875)3/2^{-}$		* * *
$N(1880)1/2^+$		**
$N(1895)1/2^{-}$		**
$N(1900)3/2^+$	**	* * *
$N(2060)5/2^{-}$		**
$N(2160)3/2^{-}$		**
$\Delta(1940)3/2^{-}$	*	**

A. V. Anisovich et al., Eur. Phys. J. A 48 (2012) 15

- $\ast\ast\ast\ast$ Existence is certain, and properties are at least fairly well explored.
- *** Existence is very likely but further confirmation of quantum numbers and branching fractions is required.
- ** Evidence of existence is only fair.
- Evidence of existence is poor.

Quark Models: Effective degree of freedom

3 equivalent Constituent Quarks

Quark-Diquark ->2 dof less states

Flux Tubes ->more states via rotation or vibration

Models

- SAID: Database for electro and photoproduction, partial wave analysis with energy independent fits
- MAID: unitary isobar model, Partial wave analysis of SAID and additional data. Uses Breit-Wigner distributions and background contributions as Born term and vector meson exchange term in t-channel (effective Lagrangians)
- BnGa: Coupled channel approach. Simultaneous fitting of different channels and observables. K-matrix parametrisation at low energies, relativistic Breit-Wigner at energies > 2.2 GeV. Non-resonant terms from t- and u-channel amplitudes.

Isospin Filter

Narrow Structure: Models

• etaMAID: $D_{15}(1675)$ resonance > $\Gamma_{\eta N}/\Gamma_{tot} = 17\%$ (PDG: $\Gamma_{\eta N}/\Gamma \simeq 0 - 1\%$)

Chiral Soliton Model: non-strange member of the baryon antidecuplet: *P*₁₁

Narrow Structure: Fit with BnGa

$S_{11}(1650)$ Interference :

sign change of elm. $A_{1/2}$ coupling of $S_{11}(1650)$

Polarisation Observables

photon		target			recoil			target + recoil		
		х	у	z	-	-	-	х	у	z
		-	-	-	<i>x</i> ′	у′	<i>z</i> ′	x'	y'	<i>z</i> ′
-	σ_0	-	Т	-	-	Р	-	$T_{x'}$	$T_{y'}$	$T_{z'}$
linearly	Σ	Н	-P	-G	0 _{x'}	-T	$O_{z'}$	-	-	-
circularly	-	F	-	-E	-C _{x'}	-	$-C_{z'}$	-	-	-

Polarisation Observables

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \cdot \{1 - P_{lin}\Sigma\cos 2\phi + P_x \cdot [-P_{lin}H\sin 2\phi + P_{circ}F] - P_y \cdot [+P_{lin}P\cos 2\phi - P_{circ}T] - P_z \cdot [-P_{lin}G\sin 2\phi - P_{circ}E] \}$$

Data Overview

	beamtime	target	length	E _e -	collimator	photon	current	trigger
		material	[cm]	[GeV]	[mm]	pol.	[nA]	
~	2008	LD_2	5.258	2.35	4	circular	0.32	eta3
BI				2.35	7	circular	0.32	eta3
E				2.35	7	circular	0.32	eta3nC
AS A	2008	LH_2	5.262	2.35		circular	0.19	trig42
T	02.0322.04.2011	dbutanol	1.88	2.35	4	circular	0.70	eta4
Ð	08.0621.06.2011	dbutanol	1.88	2.35	4	circular	0.70	eta4
S	04.1210.12.2011	carbon	1.88	2.35	4	circular	0.70	eta4
		2						
	28.10-17.11.2008	³ He	5.08	1.508	4	circular	8.0	M2+ 300 MeV
	31.03-30.04.2009	LH ₂	10.0	1.558	4	circular	10.0	M3+ 360 MeV
	08.05-25.05.2009	LD ₂	3.02	1.558	4	circular	4.5	M2+ 300 MeV
⊳	15.0724.07.2013	dbutanol	2.0	1.557	2	circular	8.3	M2+ 300 MeV
Ń	23.0228.02.2014	dbutanol	2.0	1.557	2	circular	9.0-10.0	M2+ 250 MeV
	28.0203.03.2014	carbon	2.0	1.557	2	circular	9.0	M2+ 250 MeV
	24.0330.03.2015	dbutanol	2.0	1.557	2	circular	10.0	M2+ 250 MeV

W_B versus W_R

Cross Sections as function of...

W_B(E_γ) : √s calculated with 4-momenta of initial state particles:

$$W_B^2 = (P_{\gamma} + P_{N,i})^2 = 2E_{\gamma}m_N + m_N^2$$

> Structures are smeared out because of Fermi motion

W_B versus W_R

Cross Sections as function of...

W_B(E_γ): √s calculated with 4-momenta of initial state particles:

$$W_B^2 = (P_\gamma + P_{N,i})^2 = 2E_\gamma m_N + m_N^2$$

> Structures are smeared out because of Fermi motion

W_R : √s calculated with measured 4-momenta of final state particles (η, participant nucleon):

$$W_R^2 = (P_\eta + P_{N,f})^2$$

> No effects from Fermi motion, but experimental resolution for recoil nucleon

Corrections - Monte Carlo Simulation

Requires Event Generator (Pluto,GSI)

- Implementation of Fermi motion
- Fermi Plugin
- Used by other collaborations

Nucleon Detection Efficiency

- Hard to simulate
- Different interaction mechanisms than photons
- Deposited energy \neq total energy
- Recalculate energy with kinematical considerations
- Additional corrections using hydrogen data.

Cross Sections Deuterium (CBELSA/TAPS)

 $\gamma \mathbf{p} \rightarrow \eta \mathbf{p}$

 $\gamma \mathbf{n} \rightarrow \eta \mathbf{n}$

- Consistent with A2 data
- Deviation from old CBELSA/TAPS data

Extracted Parameters

	W[MeV]	Γ [MeV]	$b_{\eta}A_{1/2}^{n}$
			$[10^{-3} GeV^{-1/2}]$
LD ₂ (D. Werthmueller)	1670 ± 1	29 ± 3	12.3 ± 0.8
LD ₂ (this work)	1676 ± 4	30 ± 3	15.3 ± 1.8
³ He (this work)	1675 ± 2	46 ± 8	11.9 ± 1.2

Differential Cross Sections LD₂, Proton (Bonn)

Differential Cross Sections LD₂, Neutron (Bonn)

Fermi Momentum ³He (A2)

• $p_s < 300$ MeV: Long range interactions ratio $\sim N/Z = 0.5$

- ▶ p_s > 300 MeV: Ratio ~ 1 as for deuterium, SRC, high Fermi momenta are produced by isospin singlet pairs!
- Dedicated experiments are planned at JLAB!

$\sigma_{1/2}$ Neutron

$\sigma_{3/2}$ Neutron

$\sigma_{1/2}$ Proton

$\sigma_{3/2}$ Proton

