

The LHCb Trigger

The LHCb trigger in Run 1 and prospects for Run 2

Conor Fitzpatrick On behalf of the UZH & EPFL LHCb groups

CHIPP plenary, Chatêau de Bossey

C. Fitzpatrick

The LHCb Experiment

- LHCb is a single-arm (2 < η < 5) spectrometer at the LHC
 - ► Precision beauty and charm physics: *CP* violation measurements, rare decays, heavy flavor production, spectroscopy, etc.
 - Indirect searches: Complementary physics programme to general purpose experiments
 - Exploits the correlated production of $b\overline{b}$ pairs in the LHC environment

- \blacktriangleright Decay time-dependent analyses require good time resolution: \sim 40 fs
- Flavor tagging, final state discrimination needs excellent particle ID
- Rare decays and extremely small asymmetries require pure data samples with high signal efficiency

The LHCb Trigger

The Run I trigger Level 0 HLT1 HLT2 Performance

Run II

Conclusions

C. Fitzpatrick

The CHIPP contribution to LHCb

- CHIPP is well represented in LHCb by the UZH and EPFL groups. Run I and II Detector activities include:
 - Silicon tracker: 99.8% hit efficiency with 50 µm resolution
 - Data acquisition electronics: TELL1 high performance readout
 - ► Flavor tagging to determine B⁰_s,B⁰_d flavor at production
 - Higher level trigger development, online calibration & alignment
- See Tim's talk (next) for the CHIPP involvement in the LHCb Upgrade

The LHCb Trigger

The Run I trigger Level 0 HIT1 HIT2 Performance CHIPP analyses $D^0 \rightarrow K^+ K^- \pi^+ \pi^ B^0_{\epsilon} \rightarrow \eta' \eta'$ $B^0 \rightarrow K^* \mu \mu$ $B \rightarrow \mu \mu$ Proton ion Run II Conclusions

C. Fitzpatrick

Typical Signatures

▶ LHCb studies beauty and charm decays. Typical topologies:

- ▶ B[±] mass ~ 5.28 GeV, daughter $p_T O(1 \text{ GeV})$
- $\blacktriangleright~\tau\,{\sim}\,1.6$ ps, Flight distance $\,{\sim}\,1$ cm
- ► Important signature: Detached muons from $B \rightarrow J/\psi X$, $J/\psi \rightarrow \mu\mu$

Underlying trigger strategy:

- \blacktriangleright Inclusive triggering on displaced vertices with high-p_T tracks
- Exclusive triggering for anything else

- \blacktriangleright D⁰ mass $\sim 1.86\,$ GeV, appreciable daughter $p_{\rm T}$
- $\tau \sim$ 0.4 ps, Flight distance \sim 4 mm
- Also produced in B decays.


```
The Run I trigger
Level 0
HLT1
HLT2
Performance
CHIPP analyses
D^0 \rightarrow K^+K^-\pi^+\pi^+
B^0 \rightarrow N'\eta'
B^0 \rightarrow K^*\mu\mu
B \rightarrow \mu\mu
Proton ion
Run II
Conclusions
```

C. Fitzpatrick

2011-2012 trigger architecture

- The Run 1 Trigger consisted of three stages:
- Level 0 (L0) near-detector hardware, readout decision in 4 μs
- In 2012: Disk buffer added: 20% of events from L0 processed in inter-fill time.
- Higher Level Trigger (HLT) 1&2: flexible software triggers running on dedicated Event Filter Farm (EFF), 29,000 cores
- Documented in [JINST 8 (2013) P04022] and [arXiv:1310.8544]

The LHCb Trigger

Introduction Level 0 HIT1 HIT2 Performance CHIPP analyses $D^0 \rightarrow K^+ K^- \pi^+ \pi^ B^0_{\epsilon} \rightarrow \eta' \eta'$ $B^0 \rightarrow K^* \mu \mu$ $B \rightarrow \mu \mu$ Proton ion Run II Conclusions

C. Fitzpatrick

L0 trigger

- L0 hardware trigger in Run I: high p_T and E_T signatures:
- L0 muon:
 - $\Delta p/p \sim 20\%$
 - \blacktriangleright Single- and Di-muon $p_{\rm T}$ thresholds
 - 90% efficient for most dimuon channels
- L0 calo: High E $_{\rm T}$ hadrons, e $^{\pm}$, γ
 - ► 50% efficient on hadronic B decays
 - ▶ 80% efficient for radiative $B \rightarrow X\gamma$ decays

Level 0

HLT1

HLT2

Performance CHIPP analyses $D^0 \rightarrow K^+K^-\pi^+\pi^ B_0^0 \rightarrow K^*\mu\mu$ $B \rightarrow \mu\mu$ Proton ion Run II Conclusions C. Fitzpatrick

ECOLE POLYTECHNIQUE

HLT1

SPD - Presbours +

- HLT1 Adds tracking and PV information:
- VErtex LOcator (VELO) tracking + PV reconstruction
- Tracks matched to L0muon hits or with large IP are selected for forward tracking into the Inner & Outer trackers (IT&OT)

HLT2 Full reconstruction

- HLT2 fully reconstructs the event
- Allows for a range of selection criteria of varying complexity
- Close to offline reconstruction performance
- Combination of Inclusive and Exclusive lines, eg:

C. Fitzpatrick

June 30, 2015

Extremely flexible, powerful software environment: Supports MVA-based selections

Topological *N*-body lines

Inclusive Charm

- Charm is an important part of the LHCb physics programme:
 - Observation of D⁰-D
 ⁰ oscillations: [PRL 110 (2013) 101802]
 - Measurement of D⁰-D
 ⁰ mixing parameters: [PRL 111 (2013) 251801]
- 600 kHz of cc in 2012: Easy to swamp the output bandwidth unless exclusive selections are used
 - Exception: D^{*} → D⁰π inclusive trigger uses M(D^{*}) − M(D⁰) to reduce the rate
 - D⁰ inclusively reconstructed in K K, π π, K π, π K final states, any in mass window are kept
- ► Cabbibo favored $D^0 \rightarrow K^-\pi^+$ is ~ 300 times more abundant than Doubly cabbibo suppressed $D^0 \rightarrow K^+\pi^-$

The LHCb Trigger

Introduction

The Run I trigger

Level 0

HLT1

HLT2

Performance

```
CHIPP analyses

D^0 \rightarrow K^+ K^- \pi^+ \pi^-

B_s^0 \rightarrow \eta' \eta'

B^0 \rightarrow K^* \mu \mu

B \rightarrow \mu \mu

Proton ion

Run II
```

Conclusions

C. Fitzpatrick

Run I Trigger performance

Trigger efficiencies for selected channels:

	Hadronic		Dimuon	Radiative
Mode	$D \rightarrow hhh$	$B{\rightarrow}\mathrm{hh}$	${\sf B}^+ { m m J}/\psi{\sf K}^+$	$B^0 \rightarrow K^* \gamma$
ϵ (HLT × L0) [%]	11	52	84	57

The LHCb Trigger

The Run I trigger

Extremely pure samples after offline selection:

What did CHIPP members do with Run 1 data?

- ▶ Too many contributions to show all: I present here some recent highlights
 - \blacktriangleright Triple product asymmetries in ${\rm D^0}\!\rightarrow\!{\rm KK}\pi\pi$
 - Observation of $B^0_s \rightarrow \eta' \eta'$
 - The P_5' anomaly in $B^0 \rightarrow K^* \mu \mu$
 - Rare decays $B^0_d, B^0_s \rightarrow \mu \mu$
 - EW measurements in proton-proton and proton-lead collisions

The LHCb Trigger

Introduction The Run I trigger Level 0 HIT1 HIT2 Performance $D^0 \rightarrow K^+ K^- \pi^+ \pi^ B_{\epsilon}^{0} \rightarrow \eta' \eta'$ $B^0 \rightarrow K^* \mu \mu$ $B \rightarrow \mu \mu$ Proton ion Run II Conclusions

C. Fitzpatrick

$\mathrm{D^0}\,{\rightarrow}\,\mathrm{K^+K^-}\pi^+\pi^-$

- > T-odd correlation asymmetry: Complementary measurement to direct CPV
- ▶ 4-body final state needed to define basis for triple-product asymmetries:

$$C_T\equivec{p}_{\mathsf{K}^+}\cdot(ec{p}_{\pi^+} imesec{p}_{\pi^-}), \qquad ar{C}_T\equivec{p}_{\mathsf{K}^-}\cdot(ec{p}_{\pi^-} imesec{p}_{\pi^+})$$

▶ LHCb measurement JHEP 10(2014) 005: D^0/\overline{D}^0 tagged using muon from semileptonic $B \rightarrow D^0 \mu X$ decays

- A_T, Ā_T asymmetries not so clean due to FSI
- CPV asymmetry: $a_{CP}^{T-odd} = (A_T - \bar{A}_T)/2$ very clean due to cancellation
- ► $a_{CP}^{T-odd}(D^0) =$ [1.8±2.9(stat)±0.4(syst)]×10⁻³
- consistent with 0 CPV

The LHCb Trigger

Introduction The Run I trigger Level 0 HIT1 HIT2 Performance CHIPP analyses $D^0 \rightarrow K^+ K^- \pi^+ \pi^ B_c^0 \rightarrow \eta' \eta'$ $B^0 \rightarrow K^* \mu \mu$ $B \rightarrow \mu \mu$ Proton ion Run II Conclusions

C. Fitzpatrick

 $\mathsf{B}^0_{\mathfrak{c}} \to \eta' \eta'$

- Never-before seen, pure CP eigenstate sensitive to CP violation in interference between mixing and decay
- ▶ arXiv: 1503.07483: First observation and BF using $B^{\pm} \rightarrow \eta' K^{\pm}$ control channel

- > 3D fit to B_s^0 , $2 \times \eta'$ mass distributions
- 6.4 σ observation with ~36 signal candidates
- Charge asymmetry measurements of $B^{\pm} \rightarrow \eta' K^{\pm}, B^{\pm} \rightarrow \phi K^{\pm}$ control channels consistent with SM predictions
- Excellent prospects for a future CPV measurement

The LHCb Trigger

```
Introduction
The Run I trigger
Level 0
HIT1
HIT2
 Performance
CHIPP analyses
D^0 \rightarrow K^+ K^- \pi^+ \pi
B_c^0 \rightarrow \eta' \eta'
B^0 \rightarrow K^* \mu \mu
 B \rightarrow \mu \mu
 Proton ion
Run II
Conclusions
```

C. Fitzpatrick

 ${\sf B}^0 \!
ightarrow \!{\sf K}^* \mu \mu$

- ▶ $B^0 \rightarrow K^* \mu \mu$ is sensitive to NP in $b \rightarrow s \ell^+ \ell^-$ FCNC processes
- Rates, asymmetries and angular distributions sensitive to NP
- Experimentally clean channel with high efficiency at LHCb

- ▶ Full angular analysis LHCb-CONF-2015-002, using 2398±57 signal candidates.
- P'_5 : Sensitive to NP in V or A couplings.
- ► Theoretically cleanest observable due to form factor cancellation.
- \blacktriangleright 3.7 σ local tension between measurement and SM prediction

The LHCb Trigger

Introduction

C. Fitzpatrick

 $B \rightarrow \mu \mu$

- ▶ $B_s^0 \rightarrow \mu\mu$ is highly suppressed in the SM, BR precisely predicted: (3.66 ± 0.23) × 10⁻⁹
- New physics processes could substantialy enhance the BR: Deviation from the SM BR is a smoking gun for NP!
- Combination of CMS & LHCb analyses, nature 522 (2015) 68:

- Observation of the rarest B_s^0 decay, $B_s^0 \rightarrow \mu \mu$ (6.2 σ), with evidence of $B_d^0 \rightarrow \mu \mu$ (3.2 σ)
- Consistent with SM at 2σ : Plenty of room for improvement in Run II

The LHCb Trigger

Introduction

The Run I trigger Level 0 HLT1 HLT2 Performance CHIPP analyses $D^0 \rightarrow K^+K^-\pi^+\pi$ $B_y^0 \rightarrow \eta'\eta'$ $B^0 \rightarrow K^*\mu\mu$ Proton ion Run II Conclusions

C. Fitzpatrick

Proton-ion measurements

- LHCb isn't just about beauty and charm! LHCb covers a unique region of pA phase space
- ▶ Very successful 5 TeV proton-lead and lead-proton data taking period in run 1 with 1nb⁻¹ forward and 0.5nb⁻¹ backward data

⁹⁰¹₂[GeV²]

10

103

102

10¹

 $\sqrt{s_{NN}} = 5 \text{ TeV}$

Forward

10-6 10-5 10-4 10-3 10-2 10-1

Backward

XA

Run II

Conclusions

C. Fitzpatrick

June 30, 2015

ÉCOLE POLYTECHNIQUE ÉCOLE POLYTECHNIQUE

- ► J/ψ JHEP 02(2014) 072 and ↑ JHEP 07(2014) 094 production studies, Z production JHEP 09 (2014) 030
- Plans to take lead-lead as well as proton-lead measurements in Run 2.

Run II

► LHCb is ready for Run II!

The LHCb Trigger

Introduction The Run I trigger Level 0 HLT1 HLT2 Performance CHIPP analyses $D^0 \rightarrow K^+K^-\pi^+\pi^ B_s^0 \rightarrow \eta' \eta'$ $B^{0} \rightarrow K^{*} \mu \mu$ $B \rightarrow \mu \mu$ Proton ion Conclusions C. Fitzpatrick June 30, 2015

ÉCOLE POLYTECHNIQUE

 No significant changes to the detector, but the trigger architecture has been improved

Run II trigger

 $\blacktriangleright~8\,{\rightarrow}\,13~$ TeV: Higher b, c cross sections and a larger physics programme

- Goal: make trigger more compatible with offline analysis environment
- Requires HLT to perform detector alignment and calibration
 - Move buffering to after HLT1: Buffer at kHz instead of MHz
 - Buffer to disk while alignment is performed
 - Run HLT2 after alignment
- Allows us to use selections similar to offline:
- eg: full RICH PID [EPJC 73 2431], currently used in a limited capacity
- Major advantage: Allows prescaling of Cabbibo-favored charm decays while keeping 100% of DCS.

The LHCb Trigger

Introduction

The Run I trigger

Level 0

HLT1

HLT2

Performance

```
CHIPP analyses
```

```
D^{0} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}
B^{0}_{s} \rightarrow \eta'\eta'
B^{0} \rightarrow K^{*}\mu\mu
B \rightarrow \mu\mu
Proton ion
```

Run II

Conclusions

C. Fitzpatrick

The turbo stream

- > Offline-quality distributions straight from the trigger means no need to reprocess
- > Turbo stream: Remove raw event, use candidates built by trigger for analysis
- Our limitation is bandwidth, not event rate, so smaller events means more events:

In Run II a large fraction of the charm physics program will be covered by the turbo stream.

The LHCb Trigger

Introduction The Run I trigger Level 0 HLT1 HLT2 Performance CHIPP analyses $D^0 \rightarrow K^+K^-\pi^+\pi^ B_{g}^0 \rightarrow \eta'\eta'$ $B^0 \rightarrow K^*\mu\mu$ $B \rightarrow \mu\mu$ Proton ion Run II

Conclusions

C. Fitzpatrick

First data from Run II

► The Turbo stream is already producing signals with the first collisions at 13 TeV!

► Early Run II measurements are already underway. Expect results at EPS

The LHCb Trigger

Introduction

C. Fitzpatrick

Conclusions

- The LHCb Run I trigger covered an extremely wide range in a challenging environment:
 - efficiency: purity: Candidates / (44 MeV/c²) 14 LHCb LHCb RS data BDT>0.7 12 E Fit 3 fb⁻¹ Background 5000 5500 2.005 2.01 2.015 2.02 $m_{\mu^+\mu^-}$ [MeV/c²] $M(D^0\pi_{\rm s}^+)$ [GeV/c²]
- From the rarest B decay at high
 to the largest charm samples at high

- ▶ Run II builds on the successes of Run I, introducing several new features:
 - Disk buffering for calibration and alignment
 - Turbo stream for high rate analyses

Thank you for listening!

The LHCb Trigger

Introduction The Run I trigger Level 0 HIT1 HLT2 Performance CHIPP analyses $D^0 \rightarrow K^+ K^- \pi^+ \pi^ B_c^0 \rightarrow \eta' \eta'$ $B^0 \rightarrow K^* \mu \mu$ $B \rightarrow \mu \mu$ Proton ion Run II

C. Fitzpatrick

The Run I LHC environment

The LHC is a great place to study precision beauty and charm physics, but it isn't easy. In Run I:

- ▶ $\sigma_{\rm b\bar{b}} = 75.3 \pm 14.1 \; \mu {\rm b}$ [Phys. Lett. B694(2010)]
- ▶ $\sigma_{c\bar{c}} = 1419 \pm 134 \ \mu b$ [Nucl. Phys. B871 (2013)]
- Corresponds to 30 kHz bb pairs, 600 kHz cc pairs in acceptance.
- Signal purity is independent of pileup:

- 40 MHz bunch crossing frequency
- Luminosity $\mathcal{L} = 4 \times 10^{32} \text{cm}^{-2} \text{ s}^{-1}$ (2 × design)
- - P(%) | 55 30 11 4
- $\mu \sim 1.6$ interactions per bunch crossing

The LHCb Trigger

Backup Slides

Run I

The LHCb Run I dataset

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

Run I Online Monitoring

It isn't just offline selected data that is clean:

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

June 30, 2015

Online monitoring plots as seen in the control room, straight from HLT2

L0 muon trigger

▶ Single- and Di-muon triggers: $p_T > 1.5$ GeV, $p_{T1} \times p_{T2} > 1.3$ GeV²

LHCD THCD

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

June 30, 2015

ÉCOLE POLYTECHNIQU

▶ 90% efficient for most dimuon channels

• Momentum resolution $\Delta p/p \sim 20\%$

L0 muon rate: 400 kHz

L0 calo trigger

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

June 30, 2015

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 22 / 22

- $\blacktriangleright\,$ Selects High ${\rm E_T}$ hadrons, e $^\pm$, γ
- \blacktriangleright Threshold $E_{\rm T} > 2.5 3.5~GeV$
- \blacktriangleright Preshower and SPD discriminate between e $^\pm$, γ

- ► Hadronic B-decay efficiency 50%
- ▶ 80% efficient for radiative $B \rightarrow X\gamma$ decays
- \blacktriangleright L0 e $^{\pm}\,/\gamma$ rate: $\,\sim 150~\rm kHz$
- \blacktriangleright L0 hadron rate: \sim 450 kHz

Run I L0 efficiencies

Figure 4. The efficiency ε^{TOS} of L0Hadron is shown for $B^0 \rightarrow D^-\pi^+$, $B^- \rightarrow D^0\pi^-$, $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$ as a function of p_T of the signal *B* and *D* mesons.

Figure 5. The efficiency ε^{TOS} of LOElectron is shown for $B^0 \to J \triangleleft \psi(e^+e^-)K^{*0}$ as a function of p_T (Jay).

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

Run I HLT1 efficiencies

Figure 7. Efficiency ε^{TOS} of HltlTrackAllLO is shown for $B^- \rightarrow D^0 \pi^-$, $B^0 \rightarrow D^- \pi^+$, $D^0 \rightarrow K^- \pi^+$ and $D^+ \rightarrow K^- \pi^+ \pi^+$ as a function of p_T and τ of the *B*-meson and prompt *D*-meson respectively.

Figure 6. Efficiency ε^{TOS} of HltlTrackMuon, HltlDiMuonHighMass and HltlDiMuonLowMass for $B^+ \rightarrow J \cdot \psi(^{+ -})K^+$ as a function of the p_T and lifetime of the B^+ .

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

Run I HLT1 forward tracking

► Forward tracking looks for corresponding hits in IT & OT

 \blacktriangleright $p_{\rm T}$ dependent search windows for single muon, dimuon and high- $p_{\rm T}$ track categories:

▶ HLT1 efficiencies vs. p_T [JINST 8 (2013) P04022]

- ▶ left: $B^+ \rightarrow J/\psi K^+$ candidates with HLT1 muon triggers
- right: Hadronic modes

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

Run I HLT2 inclusive dimuon

- Makes use of same muon ID strategy as offline: [LHCb-DP-2013-001]
- "Prompt and Detached" strategy:
 - Prompt lines avoid lifetime-biasing cuts but are prescaled (unless high p_T)
 - Detached lines use IP cuts to increase purity
- ▶ 92% efficient on $B^+ \rightarrow J/\psi K^+$ [LHCb-PUB-2011-017]

The LHCb Trigger

Backup Slides

Run I

• Υ spectrum with \sim 51pb⁻¹

Offline σ(Υ(1S))~43 MeV
 [JHEP 06 (2013) 064]

C. Fitzpatrick

Run I HLT2 μ , charm efficiencies

Figure 8. Efficiencies ε^{TOS} of Hlt2DiMuonJPsiHighPT and Hlt2DiMuonDetachedJPsifor $B^+ \rightarrow \mathcal{K}\psi K^+$ as a function of p_T and τ of the B^+ .

Figure 11. Efficiency e^{T0S} of the lines Hlt2CharmHadD2HHH and Hlt2CharmHadD02HH_D02KPi for $D^- \rightarrow K^- \pi^+ \pi^- an D^0 \rightarrow K^- \pi^+$ respectively as a function of p_T and τ of the D-meson. The efficiency is measured relative to events that are TOS in HltlTrackAllL0.

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

Run I HLT2 Topo efficiencies

Figure 9. Efficiency e^{TOS} if at least one of the lines H1 = 2ToponBody, with n = 2.3, selected the event for $B \rightarrow D^0 \pi^-$ and one of the lines with n = 2.3.4 for $B^0 \rightarrow D^- \pi^+$ as a function of p_T and τ of the B-meson. The efficiency is measured relative to events that are TOS in H11TrackA11L0.

Figure 10. Efficiency e^{TOS} if at least one of the lines Hlt2ToponBody or Hlt2TopoMunBody, with $n = 2\cdot3$, selected events for $B^+ \rightarrow Ja\psi K^+$, as a function of p_T and τ of the B-meson. Also shown is e^{TOS} if the line Hlt2ToponBody, with $n = 2\cdot3$, selected the events. Hlt2Topo2Body shows the inclusive performance of the topological lines. The efficiency is measured relative to events that are TOS in either Hlt1TrackAllL0 or Hlt1TrackMon.

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

Global Event Cuts

- ▶ Very high multiplicity events take disproportionate time to reconstruct
- Global Event Cuts (GECs) are used to remove these events, freeing processing power for low. mult. events
- ▶ GEC requires Sum of HCAL + ECAL multiplicities < 1200:

- ▶ 10% inefficiency on $B_s^0 \rightarrow \phi \phi$ but
- Reduces track reconstruction time by 20% and more than halves the timing of multibody selections
- ▶ Reduced timing means looser selection requirements: Higher overall efficiency

The LHCb Trigger

Backup Slides

Run I

C. Fitzpatrick

