

Mu3e-Experiment

- the Intensity Frontier

Peter-Raymond Kettle Paul Scherrer Institut PSI

- On behalf of the Mu3e Collaboration

PSI a Benchmark for the High-Intensity Precision Frontier

The unique "HIPA" high-intensity proton accelerator complex at PSI - runs at the "Intensity Frontier"

- so enables
- the World'd highest intensity DC
 Surface Muon Beams > 10⁸μ⁺s⁻¹
- Optimal machine duty-cycle for coincidence experiments (100% macro duty-cycle)

Routine 1.3 MW Beam Power

Can explore the Predicted realm of 'New Physics' through precision experiments, allowing insight into mediating particle mass scales far beyond the reach of the 'High-Energy Frontier Machines' Λ > 1000 TeV

Intensity Frontier - Muons & cLF-Physics

Fundamental Questions still Remain Unanswered!!!

To unravel the puzzle of FLAVOUR MIXING & CP-VIOLATION & the connection between the 3 generations of Fermions in the *quark* & *lepton sectors* e.g. Possible Mu3e couplings

one needs the complementarity of LF violated in the *High-energy* & *High-intensity* Frontiers the neutral LHC, PSI-HIPA, Super-KEKB, FNAL, J-PARC sector Neutrino Mixing (confirmed) Muons seem to provide the most sensitive limits (copious source, small mass, long life) "GOLDEN CHANNELS" sleptons in the Charged Lepton Sector: Charged Lepton Mixing (not observed yet) $\mu N \rightarrow e N$ $\mu \rightarrow e\gamma$ $\mu \rightarrow 3e$

All 3 channels are needed since subject to same as well as different couplings

(similar $\mu N \rightarrow e N$, $\mu \rightarrow e \gamma$ but $\mu \rightarrow e \gamma$ no 4-fermion) e.g. $\mu \rightarrow 3e$

SM (Radiative)

Dipole photonic Loops

Current cLFV-Experimental Limits

Next Generation Facilities & cLFV Experiments

Mu3e Experiment at PSI

Experimental Challenge

- Observe more than
 10¹⁶ Muon decays
- Handle GHz muon rates
- Suppress backgrounds by
 > 16 orders of magnitude
- Have sufficient signal (V) sensitivity & rejection power to achieve Q(10⁻¹⁶) measurement

Signal: $M^+ \rightarrow e^+ e^+ e^-$ 3 charged Particles: 2e⁺ & e⁻

(i) coincident in time (measure time t_{eee}) (ii) Coplanar + same vertex (iii) Σ Energy = M_{μ} (measure E_e) (iv) $\Sigma p_i = 0$ (measure P_e) (v) Track curvature in Bfield

"Combinatorial" Background A) e* Michel decays + Fake e* Good Energy $\mathfrak{M}^{+} \to e^{+} \mathfrak{M}_{e} \overline{\mathfrak{M}}_{m} + e^{-}$ "Physics" Background 8 Radiative muon decay RMD Momentum Fake e⁻ : γ-conversion, Bhabha scattering with Internal or External Resolution mis-reconstruction Conversion B) RMD (IC) + Michel (Fake e⁺) $B(\mu^+ \rightarrow e^+e^+e^-vv) = 3.4 \cdot 10^{-5}$ $\mu \to (e^+) \mathcal{N}_e \overline{\mathcal{N}}_m e^+ e^-$ Pion Decays: $\mu \to e^+ \mathcal{N}_e \overline{\mathcal{N}}_{\mu} e^+ e^$ negligible + Michel Precise $\rho^+ \rightarrow e^+ \rho_e^- e^+ e^-$ Vertexing, $M^{+} \to e^{+} N_{e} \overline{M}_{n} g$ Timing & $\mathcal{P}^{+} \rightarrow \mathcal{M}^{+}\mathcal{N}_{m}\mathcal{Q}$ $q \rightarrow e^+ e^-$ **P-resolution**

Peter-Raymond Kettle

Experimental Optimization

 $\mathcal{M}^{+} \to e^{+} \mathcal{N}_{e} \overline{\mathcal{N}}_{m} e^{+} e^{-}$

To cope with the "**physics background**"! need precise momentum measurement & excellent energy resolution for missing energy ΣE_ν

To reach $\mathscr{B}(\mu \rightarrow 3e) \le 10^{-16}$ need $\sigma_{\rm E} < 1 \,{\rm MeV}$

2)

High-rate, high-precision tracking in **1** T Bfield Use \Rightarrow Si

- Granularity of tracker is high then momentum resolution σ_p/p dominated by Multiple Scattering $\sigma_p/p \propto \sqrt{N_{LAYERS}}$ use FEW but THIN Layers!
- Good momentum resolution NEED
 - large lever-arm -> large r-detector BUT loose low-p tracks
 - best precision as with 180° spectrometer

Solution small r-detector ⇒ Re-curl stations for re-curling tracks

The Staged Approach

Intensity Frontier "Compact Muon Beam Line" CMBL

- Both Experiments "MEG II" & "Mu3e Phase I" will run at the highest rates → need to share one of the most intense muon beams in the world! → PiE5
- Mu3e has similar beam requirements to MEG II $O(10^8) \mu^+/s$, 28 MeV/c ONLY π E5 possible!!!
- Solution → Mu3e "Compact Muon Beam Line" Ultra-compact beam line Allowing both experiments to CO-EXIST with minimal switch-over & without compromising the physics goals
- Split-triplet optics for compactness

The Mu3e CMBL Test Setup

Tuesday 16/12/2014 "Compact Muon Beam Line" Test Setup achieved "Proof-of-Principle" ©(10**8) Muons/s at Mu3e Solenoid Injection Point 1.JT

On Route to the Silicon Trackers

Used in central Barrel Region & Re-curl Station

Main Function

- **Rate Capability**
- **Momentum Resolution**
- Vertexing

<u>Requirements</u>

- Minimal material budget
- High granularity •

Technology used

HV-MAPS – "High Voltage Monolithic Active Pixel Sensors"^{25 µm} + ^{25 µm} Kapton flex-print mock-up

- HV-CMOS technology reverse bias ~6oV
- Fast Charge collection via drift < 1 ns (9 μm depletion-layer)
- Thinning to < 50 μ m possible < 1 % X_o per layer
- Integrated read-out electronics in n-well -> Preamp, discriminator, Timestamp, address,

zero-suppression

- Triggerless fast readout (time-frames 50 ns 20MHz)
- Total 275 M channels
- <20 ns time resolution, vertex resolution ~ 200 µm

5 Generations of Mupix Chip -> current Mupix 7 has ALL featues implemented

Inner double-layer Support structure

I.Peric, P. Fischer et al., NIM A 582 (2007) 876 (ZITI Mannheim, Uni Heidelberg

Thinned Mupix Telescope Performance

Mupix 4: DESY – beam test 5 GeV e⁻ > 1MHz hit rate

Efficiency

Next – Scale-up Mupix 7 Size -> (2x1) cm²

Peter-Raymond Kettle

Difference between trigger and timestamp [ns]

Timing Detectors: SciFi Tracker

Used in central Barrel Region

Main Function

- Good Timing
- Reduce Accidentals

<u>Requirements</u>

- Minimal material budget
- High granularity
- Fast with σ_T < 1ns

Baseline Design

4500 Fibres in **3 layers a 1500/layer** Fibres Kuraray-> **250 μm dia. Double-clad ,** TiO₂ or Al coating 24 Ribbons : 16 mm wide, ~ 300 mm long

<u>Readout</u>

Column readout SiPM array

SiPMs (both ends) via 64-ch LHCb-type SiPM column readout or custom single-fibre readout STiC/MuSTiC – custom ASIC developed KIP Heidelberg

Performance

Eff. Thickness 700 μ m < 2 ‰ X_o Timing resolution σ_t < 500 ps

SCiFi -continued

Alternative Design: 250 µm Square Fibres

Fibres in 2-3 staggered layers a 1500/layer Fibres Saint-Gobain-> 250 µm Square Double-clad , Al coating

Ribbon 16 x 0.5 mm²

Test Performance mips

Mean timing resolution $\sigma_t \sim 410 \text{ ps}$ Efficiency (double layer) > 99% Optical x-talk < 1%

Timing Detector - Tile Detector

Used in Re-curl Stations

Main Function

- **Excellent** Timing
- **Reduce Accidentals**

Requirements

- High granularity 3360 chs/ module ۲
- High resolution $\sigma_T < 100$ ps
- Max. efficiency

The Timing Asset

<u>Performance</u> Time resol. ~ 60 ps Efficiency > 99% Pileup (phase I) < 1%

Tiles (BC408)

Tiles+ SiPMs

Time Resolution [ps]

20E

🗕 Data

0 0 0

Simulation

8 0

ŝ

~12 cm

Peter-Raymond Kettle

CHIPP Plenary 2015

c

~ 36 cm

Test Beam DESY

Expectation – Sensitivities

- Fully digitized, zero-suppressed channel readout
 ~ 275 M chs
- No trigger continuous FE read-out (time slices) ~1Tbit/s
- ~50 PCs & GPUs (on-line Filter Farm)
- On-line track reconstruction 10⁹ 3D track fits/s achieved
- Data reduction factor 1000
 on tape 100Mbyte/s

Peter-Raymond Kettle

Phase II - continuing @ the Intensity Frontier

GHz Muon beam required for next generation LFV-experiments at PSI such as Mu₃e Phase II...

A **2-year Feasibility Study** started end 2013 known as the **HiMB-Project** to look into the possibilities of a new "**H**igh-**i**ntensity **M**uon **B**eam" at PSI

→ Based on a Novel Idea

Use window of the SINQ spallation neutron target as a Source of surface muons – extracting them in the opposite direction down the proton beam line into a cellar region just below the spallation source, using solenoidal channel.

HiMB Project mid-term Findings

- Harsh environment -> Severe restrictions on magnet technologies possible
- Only radiation-hard coils possible
- Main restriction from small beam-pipe aperture dia = 220 mm
- Only feasible if can lift restriction on beam-pipe → need to modify SINQ moderator tank -> Not Possible NOW HiMB@EH

Surface

muons

 D_0O

HiMB@EH → Now Studying PSI Proton-hall Version Candidate → Replace thin Target M Station at PSI

Current Basis: Split Solenoidal Channel with 20 mm C

1-side Particle Physics: High-intensity option1-side Materials Science: High Polarization option

First Simulations Suggest O(10¹⁰) μ^+ /s can be Transmitted over ~ 20 m at I_P= 2.3mA G4BL Capture Sols. Transmission Sols.

> 1.3·10¹⁰ μ⁺ Transmitted T~40%

Source

Captured

~26%

3.4.10¹⁰ μ⁺/s

1.3°10¹¹ µ⁺/s

Peter-Raymond Kettle

Collaboration Commitments

- Beam and Target (PSI)
- Solenoidal Magnet (PI-HD)
- Pixel Detector (PI-HD, KIT, Mainz)
- Scintillating Fibre Detector (ETHZ, PSI, UniG, UniZ)
- Scintillating Tile Detector (KIP-HD)
- Detector Readout and Filter Farm (UniM)
- Mechanics and Cooling (PSI, PI-HD)
- Experiments Infrastructure (PSI)
- Slow Control (PSI)
- Computing under discussion!

Model-independent Approach

Sensitivity to new BSM mediating mass-scales Λ

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \left(\bar{e}\gamma^{\mu}e\right) \,.$$

A. de Gouvêa Nucl. Phys. B 188 (2009) 303-308

 Λ = mediating mass scale
 κ = dimensionless parameter giving relative contribution of dipole κ< 1 or 4-fermion κ>>1 contribution

Peter-Raymond Kettle