Short Baseline Neutrino Program @ Fermilab (MicroBooNE et al)

µBooNE

Michele Weber

Albert Einstein Center for Fundamental Physics Laboratory for High Energy Physics University of Bern

P5 recommendations, based on 5 "physics drivers"

UNIVERSITÄT BERN

2

IIVERSITÄT

Interesting signals from short baseline experiments (<1km)

Experiment	Type	Channel	Significance
LSND	DAR	$\bar{\nu}_{\mu} \to \bar{\nu}_e \ \mathrm{CC}$	3.8σ
MiniBooNE	SBL accelerator	$\nu_{\mu} \rightarrow \nu_{e} \ \mathrm{CC}$	3.4σ
MiniBooNE	SBL accelerator	$\bar{\nu}_{\mu} \to \bar{\nu}_e \ \mathrm{CC}$	2.8σ
GALLEX/SAGE	Source - e capture	ν_e disappearance	2.8σ
Reactors	Beta-decay	$\bar{\nu}_e$ disappearance	3.0σ

K. N. Abazajian et al. "Light Sterile Neutrinos: A Whitepaper", arXiv:1204.5379 [hep-ph], (2012)

- > Physics case for Short Base-Line experiments
- No discovery if taken separately, but together they could be a hint at something new
- Most common interpretation: evidence for high mass-squared neutrino oscillations
 - existence of additional, mostly "sterile" neutrino states with masses at or below a few eV ?

MiniBooNE

b UNIVERSITÄT BERN

U

> A better measurement needs to address this

Example events from ARGONTUBE (2006-2015) (actual cosmic rays)

ь

MicroBooNE on the Booster Neutrino Beamline

^b UNIVERSITÄT BERN

MicroBooNE: 170 tons LAr (89t active)

 $u^{\scriptscriptstyle b}$

UV laser calibration system

UNIVERSITÄT BERN

24/7 shifts

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Purging and cooling

UNIVERSITÄT BERN

Filling !

UNIVERSITÄT BERN

Top temp: 107.6K Bottom temp: 89.0K 227.8 cm / 22027 gal / 83.38 m³ / 89.7 in of {Ar

as of 2015-06-30 02:09:44.124319

http://argo-microboone.fnal.gov/FillLevel/

External muon tagger

- > Upgrade to MicroBooNE: add a tagger system for cosmic rays
- > Challenging retro-fit due to space constraints

- > Issue:
 - Operation at surface
 - the detector is active during the drift time and $t_{drift} = 1000 \text{ x } t_{spill}$

Cosmogenic tagger

UNIVERSITÄT BERN

b

Ŭ

Extension to three detectors

SBND (SNB near detector)

UNIVERSITÄT BERN

U

Muon tagger SBND

UNIVERSITÄT BERN

h

Laser system

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Summary

u	

h

UNIVERSITÄT BERN

- > Physics motivated short baseline neutrino program
- Strong Swiss contributions
- MicroBooNE being commissioned, first data 2015
- Extension to a three-detector setup, operation in 2018

A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

