ATLAS

UPGRADE PROJECTS

Federico Meloni

b UNIVERSITÄT

b

U

BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Upgrade goals and motivations

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

Successful Run 1: Higgs discovery, plenty of other results

- ATLAS showed excellent performance
- Recorded more than 25 fb⁻¹ of pp collisions
- But physics doesn't stop there...

Physics potential of the LHC and HL-LHC

- Probing the Higgs sector
- Extending the reach for new physics

Detector development as response to rising luminosity

- Higher Rates ==> Trigger
- Pileup ==> Tracking
 - tracking in the core of high E_{τ} jets
 - primary & secondary vertex reconstruction
- Detector performance degradation
 - **Radiation damage**
 - **Detector Integrity**
 - Component aging & obsolescence

 $\sqrt{s} = 7 \text{ TeV}$

full data

 $\sqrt{s} = 8 \text{ TeV}$

partial data

full data

ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown. All limits guoted are observed minus 1 σ theoretical signal cross section uncertainty.

Upgrade goals and motivations

NEW PHYSICS

SUSY

- Squarks and gluinos 1-1.5 TeV
- SUSY particle properties

3-5 TeV W' and Z' properties Look for strongly coupled scalars

HIGGS BOSON

- Measure σ x B
- Ratio of H couplings to fermions
- Low rate Higgs couplings
- Self-couplings
- Dynamics of EWSB

O(1000 fb⁻¹) required to carry out the physics program

ATLAS Upgrades overview

System	Phase 0 Upgrades	Phase I Upgrades	Phase II Upgrades
Tracking	IBL pixelsPixel new services		Replace pixel/SCT/TRT with all-Silicon tracker
Lar Calo	new LV power supplies	 finer granularity to L1Calo 	 full granularity digital readout at 40 MHz to L1Calo replace forward calorimetry
Tile Calo	new LV power supplies		 completely replace electronics digital signals to L1 improved mechanics
Muons		 NSW endcap muon system 	 replace readout electronics precision (MDT) to L1
TDAQ	 topology at L1 Fast TracKer (FTK) L2/Evt Filter/Evt Builder on one CPU 	 new L1Calo NSW in L1Muon continued FTK 	 move to L0/L1 architecture add tracking to L1 (L1Track) more use of commodity hardware in HLT/DAQ

LHC timeline

From LHC to HL-LHC

- Instantaneous luminosities x5 Particle densities x5-10
- Integrated luminosity x10 Radiation damage x10
- Increased overlap of pp events (pile up x3-5)

Phase 0 highlights The Insertable B-Layer

η

Additional 4th **pixel sensor layer**

- Close to interaction point (33 mm)
- Significant improvement to tracking: vertex reconstruction, impact parameter resolution
- The detector has ~0.1 % dead pixels!

Phase 0/1 highlights

Pixel consolidation

- On-detector services replaced
- Repaired all accessible failures (~98% modules working)
- Optical electronics moved to off-detector location for improved accessibility
- Power supply system upgraded

Readout upgrade

Occupancy increase foreseen in run II operation is problematic at Run I read out speed

- An **upgraded readout chain** is needed for the two external pixel layers
- The IBL readout system offers optimal bandwidth
- Compatibility between the on-detector and offdetector electronics needed the design of a custom optical recevier

Installation in 2015-2016

Phase 1 goals

LHC – 14 month shutdown –		nase I Upgrades	Phase II Upgrades					
•	peak lumi	ninosity = $2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$				Replace pixel/SCT/TRT with all-Silicon tracker		
	Lar Calo	•	new LV power su	pplies	 finer granularity to L1Calo 	 full granularity digital reado at 40 MHz to L1Calo replace forward calorimetry 	ut /	
		ATLAS						
	Tile Calo	•	new LV power su	Phase	1 LOI (CERN-LHCC-201	1-012)		
	Muons			trigger on low p _T (~20 GeV) leptons - difficult wi current ATLAS configuration at Phase I due to ra				
	TDAQ	•	topology at L1 Fast TracKer (FTK L2/Evt Filter/Evt Builder on one CF	 TK thresholds Similar limits for EM trigger All the upgrades compatible with Phase II 				

Fast track reconstruction for events passing the L1 trigger.

- Crucial to improve QCD rejection in b-jets and τ signatures
- Hardware based pattern recognition • and fitting (1 fit/ns)
- 1 billion patterns (roads) stored • (AM Chip 06 hold 128k patterns / chip)
- Provides input to the HLT •
- Installation started, with modular usage ramp up (full coverage in 2018).

ATLAS

Barrel ($|\eta| < 1.1$) ⁻

TWO STEP TRACK FITTING

Muon and Calorimeter upgrades

New Small Wheels: reduce fake rates and keep precision at high rate

- Improved muon tracking from $|\eta|$ > 1.3
- Resolution < 100 μm

Micromegas (1200 m²)

- Precision tracking
- High rate capable

Small-strip thin gap chambers (1200 m²)

- Triggering with timing from bunch ID
- Proven technology

Level 1 Calorimeter Trigger

- Improve granularity
- Requires new trigger electronics
- Better discrimination between electrons and jets with the use of topological information

Phase 2 goals

LHC – 18 month shutdown –		nase I Upgrades		Phase II Upgrades				
 use of crab cavities for luminosity leveling peak luminosity = 5 x 10³⁴ cm⁻²s⁻¹ 					•	Replace pixel/SCT/TRT with all-Silicon tracker		
	Lar Calo		new LV power supplies		finer granularity L1Calo	to	•	full granularity digital readout at 40 MHz to L1Calo replace forward calorimetry
	Tile Calo	ATLAS Phase 2 LOI (CERN-LHCC-201			2-022)		•	completely replace electronics - digital signals to L1 improved mechanics
	Muons	•	 Detectors must cope with instantaneous and high in luminosity 		both high tegrated	on	•	replace readout electronics - precision (MDT) to L1
	TDAQ	•	Still evaluating options re Phase II detector upgrad	eq es	uired for		•	move to LO/L1 architecture add tracking to L1 (L1Track) more use of commodity
	Builder on one CPO							

Phase 2 Tracking Detector

Possible Pixel sensor arrangement

* snapshot – still under development z (m)

Phase-II Tracker Goals

- Good/Robust Pattern Recognition: 11 measurement planes
- Good Track Location at LAr Calorimeter: 1 mm resolution in z
- High muon efficiency and resolution: 20% improvement in H-> $\mu\mu$ mass ۰ resolution
- Efficient b-jet tagging: light jet rejection factor of 400 for 65% efficiency ۲

Development of novel silicon sensors

New silicon sensors are being developed for the Phase 2 Tracker

• HV-CMOS is a family of CMOS processes where addition are made in order to allow High-Voltage (~ 100V) to be used in the circuitry.

Why use this technology for HEP?

Eff 99.7%

- Large-scale, low-cost production possible.
- Possibility to integrate full electronics in-pixel

Phase 2 L1 track trigger

Evolution of FTK for Phase II

- **Regional readout** at LO and L1 ۲
 - Calorimeter and Muons could provide region of interest (ROI)
 - Inner tracker is read out and hardware trigger confirms presence of a track candidate
 - Needs additional data stream in front end chip

- Use paired modules (omit stereo placement)
- Read out only coincident modules (high p_{τ})

Phase 2 Calorimeter upgrades

Forward Calorimeter (Fcal)

- potential problems with overheating and signal loss in Forward Calorimeter
- At high intensity beam heating could cause Liquid Argon to boil

Complete replacement

- New detector with smaller gaps
- New cold electronics for HV distribution
- New cooling loops

Installation of a small calorimeter in front of the current FCal: Mini-FCal

- Reduces energy and ionization in FCal to acceptable levels
- Mini-FCal baseline is copper plate calorimeter with Diamond detector.

Outlook

Exciting physics program with 300fb⁻¹ and 3000fb⁻¹

• Search for new particles and measurements of Higgs properties

Technical challenges ahead

- High radiation environment
- High rate of pile up and occupancy
- High trigger rates

LHC and all 4 experiments have coherent plans to perform upgrade of systems.

- This talk was only a brief summary only a part of the ATLAS upgrade effort
- The Swiss institutes are giving crucial contribution to both Phase I and Phase II activities

BACKUP

Calorimeter L1 Trigger Upgrade

Improve granularity of trigger

- Requires new trigger electronics
- Better discrimination between electrons and jets with the use of topological information

$$R_{\eta} = \frac{E_{3x7}}{E_{7x7}}$$

FTK Main Algorithms

