

Dark Matter: (indirect) Evidence

Particle Dark Matter Candidates:

- WIMP → "WIMP miracle"
- Axion
- SuperWIMPs
- sterile neutrinos
- -WIMPless dark matter
- Gravitino

Dark Matter Search

Dark Matter Search

Xe XENON, DARWIN

Ar ArDM → G2/G3 LAr

Si DAMIC

UZH, Bern

ETHZ

UZH

information/slides C. Regenfus

information/slides

B. Kilminster

Direct WIMP Search

Elastic Scattering of WIMPs off target nuclei

→ nuclear recoil

gamma- and beta-particles (background) interact with the atomic electrons

→ electronic recoil

Direct WIMP Search

Tiny Rates, small energies

R < 0.01 evt/kg/day $E_R < 50 \text{ keV}$

How to build a WIMP detector?

- large total mass, high A
- low energy threshold
- ultra low background
- good background discrimination

We are dealing with

- extremely **low rates** (1 1000 Hz)
- extremely low thresholds (~2 keV)
- extremely low radioactive backgrounds

DAMIC – Dark Matter with CCDs

- Target: Si thick CCDs
- need only 3.6 eV to create e-hole pair
- measure charge collected in CCD pixels
- low target mass but very low threshold (readout noise only 2 e⁻ RMS)
- **→ low-mass WIMPs**
- use tracks for particle ID

Charge drifted up and held at gates.

DAMIC - R&D

Background measurements of CCDs

- Measure intrinsic radioactive contamination in silicon bulk of CCD of ²³⁸U, ²³²Th, ³²Si, ²¹⁰Pb
 - → ultimate limitations of the detector technology
- search for ³²Si-³²P or ²¹⁰Pb-²¹⁰Bi delayed β-coincidence signatures
 - → time separation is tens of days!

arXiv:1506.02562

Analysis	Isotope(s)	Tracer	Bulk rate
method		for	$\mathrm{kg^{-1}d^{-1}}$
α	²¹⁰ Po	²¹⁰ Pb	<37
spectroscopy	$^{234}\text{U} + ^{230}\text{Th} + ^{226}\text{Ra}$	²³⁸ U	<5 (4 ppt)
	²²⁴ Ra – ²²⁰ Ra – ²¹⁶ Po	²³² Th	<15 (43 ppt)
β spatial	³² Si – ³² P	³² Si	80^{+110}_{-65}
coincidence	$^{210}\text{Pb} - ^{210}\text{Bi}$	²¹⁰ Pb	<33

Quenching factor measurements for low-E recoils

- Scattering experiment in ~100 keV neutron beam
 - → measure ionization efficiency
- UZH contributions: PMT characterization, detector design and GEANT simulation,

DAMIC – Results and Prospects

preliminary result

36 days of 3 CCDs up to 675 µm thick (2.9 g) in SNOLAB

- → better than CRESST at low WIMP masses
- → @ 3 GeV/c²: 10x better than DAMIC (2012)

DAMIC100

start data taking in 2015

 explore new regions which are not covered by big experiments

Towards the "neutrino-floor": DAMIC-1kg will improve by another factor 100. Skipper-CCDs: 3.6 eV energy threshold will cover region down to ~300 MeV

arXiv:1106.1839

Dual Phase TPC

Dolgoshein, Lebedenko, Rodionov, JETP Lett. 11, 513 (1970)

TPC = time projection chamber

LAr Activities: ArDM and Upgrades E

- ArDM first ton-scale LAr DM detector
- Now fully operational in single phase physics mode
- First data available from ArDM phase Run I
- Charge readout to be added later this year

- → Mainly due to PSD background suppression (>10⁸ ?)
- ArDM is a prototype facility towards G2 and G3 developments
- Reconfirmed as a CERN Recognized Experiment (RE18) 2018
 - access to CERN infrastructure (e.g. PLC, data storage defined in MoU)
- Starting collaboration with Princeton, APC Paris, LNGS
 - access to depleted argon for ArDM (in the future)
 - common developments towards G2 and G3
 - mutual exchange of technologies

ArDM – Strategy and Reach

- Experiment developed in synergy with R&D for large LAr facilities (e.g. neutrino detectors)
- Installation at LSC 2012/2013 safety approvals, commissioning 2014
- Operation of ArDM is fully remotely controlled (CERN)

LAr technology: promising for searches of **higher mass WIMPs**, difficult or inaccessible for present colliders.

ArDM will deliver design parameters for **LAr G2 and G3** future facilities

Research focus of ArDM

PSD - neutron interaction - γ background - VUV Rayleigh scattering - light collection - attenuation length - LAr purity

Neutron interaction multiplicity

Background

84% of neutron BG from replaceable parts (mainly PMTs)

Projected sensitivity (Monte Carlo)

Status and preliminary Results

Background separation by PSD only

→ very promising

Calibration data with internal 83mKr source (41 keV)

→ test of uniformity / detector resolution / LY ~1pe/keV

Background Studies

Main background is produced by ³⁹Ar (β-emitter)

- first data (34M events) analysed
- comparison to screening results and MC ongoing
- promising data quality and detector performance

Thesis Khoi Nguyen in preparation (2015)

Planned Upgrades 2015

- Improved HV FT location
- Boronated PE shields
- Components ready to be installed

Evaluation of prototype SiPM array

Preparation for upgrade in 2016

New window cathode

Conductive transparent coating + TPB

Better LY and exact fiducialisation

R&D on large area fast SiPM @ 87K

Single channel protoype Excellent photon counting 6x6 mm² sensor ~40% PDE Cryogenic electronics Low power ~0.5mW/ch

SiPMs love low temperatures

7x7 mm² type - bump bonds

New sensors - 3rd generation

- Improved dark count rates / after pulsing
- PDE > 50%
- Tiling with less 100µm gaps
- Very radio pure
- Spice / G4 simulations ongoing

Towards large surfaces - first array tests

- Large capacitance multiplexing
- Testing light concentration possibilities

Ar PS reconstruction (SiPM vs PMT mean trace) File Vertical Timebase Trigger Display Cursors Measure Math Analysis Utilities Help mean slow light component **SiPM PMT** P1:mean(C1) New PhD student Wei Mu First demonstration for PID by PSD in SiPM LAr test saturation

Red giant

XENON100 (this work)

10

10-10

10⁻¹²

0.15

0.05

_ത[®] 10⁻¹

XENON100

XENON100 (2012)

Expected limit of this run:

— observed limit (90% CL)

Astropart. Phys. 35, 573 (2012)

DAMA/N spin-independent

CoGeNT (2012)

- many results on a plethora of channels
- · design goal reached
- running @ LNGS from 2008 to now

M. Schumann (AEC Bern) – Direct Detection of Dark Matter

10² Energy [keV_]

axions and ALPs

 $m_A [keV/c^2]$

LXe light response

XENON100

XENON100 (2012)

Expected limit of this run:

 $\pm 1 \sigma$ expected

 $\pm 2 \sigma$ expected

— observed limit (90% CL)

300 400

WIMP Mass [GeV/c²]

Astropart. Phys. 35, 573 (2012)

DAMA/I

SuperCDMS (2014)

CRESST-II (2012)

XENON10 (2013)

DAMA/N spin-independent

CoGeNT (2012)

10² Energy [keV_{nr}]

CDMS-Si (2013)

- many results on a plethora of channels
- · design goal reached
- running @ LNGS from 2008 to now

M. Schumann (AEC Bern) – Direct Detection of Dark Matter

10² Energy [keV_]

neutron

XENON1T

dual-phase LXe TPC

- total mass ~3.2 t
- active mass ~2.0 t
- fiducial mass: ~1.0 t

TPC made from OFHC and PTFE

. 248 photomultipliers

- Hamamatsu R11410-21
- low background
- high QE (36% @ 178nm)
- extensive testing in cryogenic environments *JINST 8, P04026 (2013)*

Low-background stainless steel cryostats

→ will start taking data end of 2015

XENON1T

dual-phase LXe TPC

- total mass ~3.2 t
- active mass ~2.0 t
- fiducial mass: ~1.0 t

Strong Swiss Involvement

- Deputy spokesperson (Baudis)
- UZH and Bern lead 4 working groups

Main contributions

- TPC design, construction, installation
- PMT procurement and testing
- Material Screening
- Data Acquisition
- Calibration
- Monte Carlo
- Analysis XENON100 → XENON1T

The XENON Future

The XENON Future

DARWIN The ultimate WIMP Detector

- aim at sensitivity of a few 10⁻⁴⁹ cm², limited by **irreducible v-backgrounds**
- R&D ongoing

 challenges include
 background rejection
 HV stability (–150..200 kV)
 target purity, electron drift
 intrinsic radiactivity (⁸⁵Kr, ²²²Rn)
 calibration, stability
- 2014: Lol to SERI:
 "The future of dark matter
 detection with liquid xenon:
 XENONnT and DARWIN"
 → rated "A" in evaluation

Timescale: start after XENONnT

www.darwin-observatory.org

DARWIN Sensitivity

arXiv:1506.08309

• consider all backgrounds:

neutrinos (pp, 7Be) external (y, neutrons) intrinsic (0.1 μBq/kg 222Rn, 0.1 ppt Kr) CNNS (mainly 8B at low E)

- study different E-scales (S1, S1+S2, LY)
- study threshold, exposure, ER rejection

DARWIN Sensitivity

Reference WIMP mass = 40 GeV/c^2

arXiv:1506.08309

DARWIN Sensitivity

arXiv:1506.08309

- exposure: 200 t x y; all backgrounds included
- likelihood analysis (~99.98% ER rejection @ 30% NR acceptance)
- S1+S2 combined energy scale, LY=8 PE/keV, 5-35 keVnr energy window

→ also sensitive to inelastic WIMP interactions

WIMP Detection

WIMP Detection

LXe: Non-WIMP Channels

• Low E solar neutrinos: pp, ⁷Be

- → test solar model; test neutrino models
- → 1% stat. precision in 100 t x y

Coherent Neutrino Nucleus Scattering

- → not observed yet
- → 200 txy: ~200 evts > 3 keVnr ~25 evts > 4 keVnr

Solar axions and dark matter ALPs

- → alternative dark matter candidates
- → couple to electrons via axio-electric effect

Supernova Neutrinos

- → sensitive to all neutrino species (CNNS)
 (→ complementary information to large-scale neutrino detectors)
- → O(10) events for ~18 Msun SN @ 10 kpc

Neutrinoless Double-Beta Decay

- → Leption number violating process
- → access to neutrino mass, neutrino hierarchy
- → no ¹³⁶Xe enrichment required

m_{lightest} [eV]

The WIMP Landscape today

Exciting times ahead of us

