

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institute Joachim Grillenberger

Beam Availability at PSI

- Overview of the facility
- Definition of the beam availability at PSI
- Challenges of a High Power Beam
- Outage Characteristics
- Problems with RF
- Steps towards a higher availability
- Summary and outlook

Layout of the 590 MeV Proton Facility

Tue

2015 Mon

Beam Availability at PSI

Sun

٦

Sat

2010	mon	Tue	med	The		out	oun	
Shifts	MLN	MLN	MLN	MLN	MLN	MLN	MLN	
29 - 4. Jan								
5 - 11. Jan								
12 - 18. Jan								
19 - 25. Jan								
26 - 1. Feb		C						
2 - 8. Feb								
9 - 15. Feb		5	IUC	40				
16 - 22. Feb								
23 - 1. Mrz								
2 - 8. Mrz								⊢ Snuta
9 - 15. Mrz	Cleaning, sta	rt-up cooling, v	acuum					• • • • • • • • • • • • • • • • • • • •
16 - 22. Mrz	Cleaning, sta	rt-up cooling, v	acuum					
23 - 29. Mrz	RF-Tests		Security syste	em tests			· · · · · · · · · · · · · · · · · · ·	
30 - 5. Apr	RF-Tests		Electrostatic e	elements				
6 - 12. Apr		RF-Tests						
13 - 19. Apr	Interlock syst	em test	Rag test					
20 - 26. Apr	Beam develo	pment						
27 - 3. Mai	SINQ tests			SINQ interloc	k tests			
4 - 10. Mai	Setup		Start HE-oper	ration				
11 - 17. Mai	BD BD A	S S A	SSA					
18 - 24 Mai								
25 - 31 Mai								
1 - 7 Jun			-					108 J
8 - 14 Jun	BD BD A	S S A	S S A	BD BD				130 U
15 - 21 Jun	00 00 1			00 00				
22 - 28 Jun				BD BD				
29 - 5 Jul				00 00				
6 - 12 Jul		S S A	S S A	BD BD				
13 - 19 Jul	00 00 1			00 00				
20 - 26 Jul			-					
27 - 2 Aug								
3- 9 Aug	BD BD A	S S A	S S A	BD BD		211111111111111111111111111111111111111		
10 - 16 Aug								Availa 🛛
17 - 23 Aug				BD BD				Avalia
24 - 30 Aug								
31 - 6. Sep	BD BD A	S S A	S S A	BD BD				
7 - 13 Sep	00 00 11			00 00				
14 - 20 Sep								
21 - 27 Sep								
28 - 4 Okt	BD BD A	S S A	S S A	BD BD				_
5 - 11 Okt				00 00				Ream
12 - 18 Okt				BD BD			TdoT	Doam
19 - 25 Okt				00 00				
26 - 1 Nov	BD BD A	S S A	S S A	BD BD				
2 - 8 Nov				00 00				
9 - 15 Nov								*0
16 - 22 Nov								°On m
23 - 29 Nov	BD BD A	S S A	S S A	BD BD				Q
30 - 6 Dez	00 00 A			00 00				
7 - 13 Dez								
14 - 20 Dez	BD BD A	S S A	S S A					
21 - 27 Dez	Beam until De	ec 23rd 6h						
21- 21. Dez	Dean und De	00 2010 011						

Thu

Eri

14/- -

Shutdown from Dec. 24th to the 5th of May (128 days)

198 days of user operation \rightarrow 54%

Availability = Beam on target* Scheduled user operation

Beam current > 1 mA

*On meson production targets without spallation source

Beam Availability at PSI

Average: 81% (1994-2014)

87% (2004-2014)

Availability of the PSI proton accelerator

Interlock Failure 2004

incomprehensive list:

.

- a Megawatt beam can be dangerous, it melts steel in 10 ms → interlocks!
- losses must be low ($\approx 200 \text{ W} \cong 2.10^{-4}$) to avoid excessive activation

just 10 kW @870keV

dose rate [mSv/h]

main activation at extraction

History of the maximum current at PSI

High Power Resonators

f = 50.63 MHz

 U_{max} = 1.2 MV (presently 0.85 MV \rightarrow 186 turns in cyclotron, goal for 3 mA: 165 turns)

400 kW power transfer to the beam per cavity

The maximum attainable current at PSI scales with the third power of the number of turns Maximum energy gain per turn is of utmost importance in this type of high intensity cyclotron

W. Joho

Outage Characteristics (2014)

Overall availability: 86%

Beam-time statistics for HIPA	2014
Fotal scheduled user beam time	4608 h
Compensated outage time	+84 h
Beam current integral	
To meson production targets	9.1 Ah
To SINQ	6.0 Ah
To UCN	0.02 Ah
To isotope production targets	0.08 Ah
Dutages	
Total outages (current < 1 mA, time > 5s) minutes)	520 h
Availability (with compensated outage time)	86.4%

Not representative:

- Infrastructure (crane repair)
- Personal safety system
- problem with flattop cavity

Overall availability: 94%

In most cases failure of the ball bearings Harsh environment:

- High radiation level
- Vacuum \rightarrow no grease applicable

incomprehensive list:

- a Megawatt beam can be dangerous it melts steel in 10 ms → interlocks!
- losses must be low ($\approx 200 \text{ W} \cong 2 \cdot 10^{-4}$) to avoid excessive activation
- Complex and expensive infrastructure for repairs and exchange of elements for
 - Radiation protection
 - Fast exchange
 - Storage of activated components

Exchange flask for meson production Target E (4 cm graphite wheel)

mobile and specifically adapted shielding devices for

- targets
- electrostatic elements
- collimators
- septum magnets

exchange flasks are complicated and expensive devices (heavy, motors, instrumentation, SPS controls)

Infrastructure – Hot Cell

0

0

view through lead-glass window: Meson production target wheel

irradiated SINQ spallation target, taken out of the cover

Extraction Channel EEC 145 kV

Injection Channel EIC 130 kV

Most beam trips originate from discharges in these elements (2% of total availability)

Problems with Electrostatic Deflectors 2005/06

- high dark currents at electrostatic deflector
- exchange required due to damaged insulators
- insulator coated with thin metallic layer
- discharges only with RF switched on
- RF ignites plasma in the vicinity of the elements

Protective Shielding of the Electrostatic Elements

Electrostatic Inflection Channel

Tungsten stripes

incomprehensive list:

PAUL SCHERRER INSTITUT

- a Megawatt beam is a dangerous beast, melts steel in 10 ms, interlocks!
- losses must be low ($\approx 200 \text{ W} \cong 2 \cdot 10^{-4}$) to avoid excessive activation
- Expensive infrastructure for repairs and exchange of elements
- high power RF has side effects: discharges caused by decoupled RF, plasma generation, multipactoring, heating ...

Availability of the PSI proton accelerator

- high dark currents at electrostatic extractor
- Exchange required due to damaged insulators
- RF-shielding coated with thin metallic layer
- Reason: "Plasma" in sector magnet vis-à-vis

Plasma in Ring Cyclotron

KAV.5

Plasma igniting at 470 kV/p(flattop cavity)

Plasma in ring cyclotron

Beamstopper (123 MeV)

Poorly grounded beamstopper in the cyclotron center acts as an RFantenna

Plastic instead of metal

Plasma in ring cyclotron

Deformed trim coils in sector magnet (2010)

Cooling circuit failure No interlock on RF-system

Several weeks for repair \rightarrow continue operation (with up to 2.2 mA!)

New beam intensity record 2011

Limited by law and beam losses

Availability of the PSI proton accelerator

Don't halloo till you're out of the wood

PAUL SCHERRER INSTITUT

Operation 2013

Molten contact springs (3 times!)

Multipactoring inside Cavity

Paint surface with **Aquadag** (**Aqua D**eflocculated **A**cheson **G**raphite Agar, water, graphite, ammonia)

Plasma in ring cyclotron

Röntgen emission from flattop cavity

 γ -spectroscopy: not losses but X-rays with up to 550 keV

Problems with flattop cavity

Shutdown 2015

- remove cavity
- refurbish hydraulic tuning system
- Improve vacuum (new square sealings)
- tighten screws for electrodes

PAUL SCHERRER INSTITUT

Measures to avoid multipactoring

Röntgen emission from flattop cavity

after painting the electrodes with Aquadag

PAUL SCHERRER INSTITUT

Simulated Electron Orbits

still plasma between trimm coils in sector magnet \rightarrow discharges in electrostatic extraction channel

Electrostatic Extraction Channel

Beam Availability 2015

Steps towards a higher Availability

- Longer service intervals (> 8 weeks)
- Less unscheduled interruptions
- Higher proton fraction (80% instead of 33%)
- Smaller emittance
- Better beam stability
- 2.7 mA from Injector 2

Removal of aperture limitations and redundant elements

- · Less interlocks caused by loss monitors
- Less discharges

Protective shielding for electrostatic elements

- against RF
- straying ions

- Remove the electrostatic elements (ESE) at the beginning of the shutdown
- Store ESE in a vacuum chamber with HV switched on
- Keep machine evacuated as often and long as possible (use N₂ to flood)
- Careful conditioning of the RF-system (heat up the system)
- Install ESE after RF-conditioning and ramp them up slowly
- Take time to setup the machine (at least a week)
- Longer running periods (4 weeks instead of 1)
- Beam development and well-trained operators are extremely important!
- Increase gap-voltage (1.2 MV/p are possible → less turns, less losses) New flattop required (limited to 550 kV/p)
- Re-bunch the beam within the injection line between Injector 2 and Ring cyclotron
- Upgrade Injector II with two new resonators \rightarrow better beam quality for Ring cyclotron
- Improve vacuum (now P > 10⁻⁶ mbar)
- Replace trim coils (avoid secondary electron emission, plasma)
- New ball bearings for targets
- Improve ESE

Short interruptions have a considerable impact on the availability Ramping up the beam takes approx. 60 s.

With 50 short interruptions per day this corresponds to 2% of lost availability!

- Beam trips caused by microsparcs in cavities can be neglected (<500 μs)
- Discharges in the electrostatic elements switch the beam off
 - rapid re-charging
 - RF-resonator for injection and extraction

Summary

- the PSI accelerator delivers 1.3 MW beam power in CW mode
- the average availability is 87%
- significant reduction of beam trips (eg.: best week: 58 trips = 8.3 trips per day most caused by ESE)

major performance step achieved by raising the gap voltage using the new cavities in the Ring
results in reduction of losses by factor 2 at same current; new beam record current is 2.4 mA

• **modular design** allows for fast and save repair (usually < 2 d)

Infrastructure

radiation safety, shielding, waste disposal, hot-cell and radio-analytic laboratories also includes licensing and the ability to perform required studies and other formal aspects connected to safety and radiation issues which are challenging and often underestimated!

- documentation for careful planning of repair and service work
- Stock keeping of critical elements extremely important
- Continuous replacement of old or "outdated" components (especially the flattop!)
- remove redundant components from the machines

For a desirable spin-off: demonstrate applicability of cyclotron concept for ADS projects using our facility!

The PSI Ring cyclotron in 1974

The PSI Ring cyclotron in 2010

111

Proposal for a 10 MW driver

Parameter	1 GeV Ring	PSI Ring
Energy	1000 MeV	590 MeV
Current	10 mA	2.2 mA (3.0 @ 4 MV/turn)
Magnets	12 (B _{max} = 2.1 T)	8 (B _{max} = 1.1 T)
Cavities	8 (1000 kV)	4 (800 kV)
Frequency	44.2 MHz	50.63 MHz
Flat tops	2 (650 kV)	1 (460 kV)
Injection energy	120 MeV	72 MeV
Injection radius	2.8 m	2.1 m
Extraction radius	5700 mm	4462 mm
Number of turns N	140	186
Energy gain at extraction	6.3 MeV	2.4 MeV
ΔR/ΔN	11 mm	5.7 mm
Turn separation	7σ	7σ
Beam power	10 MW	1.3 MW (2.4 MW)

RF-feedthrough

Infrastructure – Exchange flasks

The Challenge of a High Power Beam

incomprehensive list:

- a Megawatt beam is a dangerous beast, melts steel in 10 ms, interlocks!
- losses must be low ($\approx 200 \text{ W} \cong 2.10^{-4}$) to avoid excessive activation
- **Expensive infrastructure for repairs and exchange** of elements
- high power RF has side effects: Plasma discharges, multipactoring, heating ...
- Ammonium Nitride and much more ...

main activation at extraction

just 10kW @870keV

Removal of carbon collimator

 \rightarrow up to a factor of 2 less losses in this region

Outlook: Proposal for a 10 MW driver

Cyclotron allows for

- sufficient beam-current and energy
- CW-operation
- low losses (sectors, cavities, bunchers)
- cost effective
- reasonable size
- modular design
- easy maintenance (individual dose)
- sound theoretical background

Important issues

- extraction losses
- decrease number of trips (el. stat. elements)
- intercept component failure (redundancy)
- RF-design with reserve
- reliable ion source (solved: ECR)
- machine protection (diagnostics, targets)
- space charge limits (flat-tops or bunchers?)

- overall availability of the proton facility is now 95%
- operation is typically distorted by short (30 s) interruptions
- significant improvement with reduced number of turns
- number of short interruptions reduced from 61/day (2007) to 28/day (2008)
- 0.5 failures per day that take longer than 10 min for recovery
- rate of longer interruptions (i.e. component failures) is not improved

Assymetries in cavities lead to decoupled RF-power

- multipactoring
- electrons are excited resonnantly
- rest gas is ionized
- ions sputter isolators with thin layers
- heat deposition on trim coils

 $f = \frac{q \cdot B}{2\pi \cdot m}$ $f = 150MHz \Longrightarrow B = 50G$

Waterleak in bending magnet (2013)

- repair impossible
- no spare magnet
- coils available need to be modified
- damaged Girolocks
- re-installation
- secondary damages

(motors, potentiometers)

Beam availability 2013

The schedule has strong impact on the overall availability

Outage distribution

Steps towards a higher Availability

New ECR ion source

- Longer service intervals (> 8 weeks)
- Less unscheduled interruptions
- Higher proton fraction (80% instead of 33%)
- Smaller emittance
- Better beam stability
- 2.7 mA from Injector 2

Removal of aperture limitations

· Less interlocks caused by loss monitors

Betrieb 2011

Verluste Ringzyklotron

The Challenge of a High Power Beam

incomprehensive list:

- a Megawatt beam is a dangerous beast, melts steel in 10 ms, interlocks!
- losses must be low ($\approx 200 \text{ W} \cong 2 \cdot 10^{-4}$) to avoid excessive activation
- high power RF has side effects: Plasma discharges, multipactoring, heating ...
- Ammonium Nitride and much more ...

main activation at extraction

3D of almost 70% of the facility (accelerator part) Detailed dose rate mapping

Technical Improvements

New ECR proton source Shielding of the electrostatic elements

Injection / Extraction with electrostatic elements

Component Activation of Ring Cyclotron

Activation level allows for necessary service / repair work

- personnel dose for typical repair mission 50-300 μSv
- optimization by adapted local shielding measures
- shielded service boxes for exchange of activated components
- detailed planning of shutdown work

PAUL SCHERRER INSTITU

- low beam losses are key issue
- recent improvements:
 - new ECR source (emittance)
 - reduced 50Hz residual beam jitter
 - aperture restrictions in Ring removed

→ higher current at same loss rate possible

Diagnostics for Machine Protection

System based on ca. 150 interconnected very fast (<100ms) hardware CAMAC and VME modules treating about 1500 signals provided by the equipment:

1. lonisation chambers as beam loss monitors

Simple and reliable device

Losses outside margins are interlocked (including low values)

- permanent display of losses
- fixed warning and interlock limits
- limits as a function of the beam current

beam hits material (e.g. steel vacuum chamber):

-

Discharges caused by Plasma

_

Outages 2013

Ring activation

Operational data 2009

Performance 2009

Charge delivered: **9.7Ah** Reliability: **89.5%** Beam trips: **25..50 d**⁻¹

Downtime reasons

- electrostatic elements
- cooling/site power
- controls problems
- RF not prominent!

Reliability History:	
2010:	84%
2009:	89%
2008:	90%
2007:	90%
2006:	86%
2005:	84%

Mit Synchrotronlicht können wir am PSI in magnetische Materialien hineingucken und so ...

- ...verstehen wir Details der Nanowelt, um Technologie zu optimieren.
- ...erforschen wir das Zusammenspiel von neuen Materialien.
- ...entdecken wir vielleicht neue Nanomagnete.
- ...schaffen wir Wissen für Morgen.

Mein Dank geht an

Hfkashfjkdashm, lksadjflkadsjf, fklasdjflasdjfkl, flakdjflkadsjf, kjdsfljsakdfjads, dfkjasdlfjaölsd, fasdfjlaksdjfklas, alsdfjladsjflökasd, lasdjflöasdjflkadsj, fklasdjfladsjf

New ECR-Ion-Source

- Longer service intervals (> 8 weeks)
- Less unsceduled interruptions (2 instead of 5)
- Higher proton fraction (80% instead of 33%)
- Smaller exittance
- Better beam stability
- 2.5 mA from Injector 2

Radiation Safety

considerable effort to monitor ~1300 employees

~170-190 employees really involved with accelerator critical maintenance or work on active components

• group of 10 colleagues responsible for radiation safety of the accelerator facility

monitoring of radiation in accelerator facilities by TLD/CR39 dosimeters (~100) + grid of remotely readable

dosimeters (12+4); some (~5) dosimeters outside PSI area

• 10 hand and foot monitors at exits of experimental hall

access to hot-cell and specific radioanalytics

history of accumulated charge and collective dose

[note: step in number of considered persons]

3. Beam current transmission monitors compare the beam current at different spots for detecting loss of beam normally 100% of transmission except at the targets and when beams are splitted.

100 % transmission in main cyclotron
100 % transmission in beam lines, (except for split beams)
97 % transmission of thin target M
70 % transmission of thick target E

Integration time:

110 ms at 0 μA down to 10 ms above 1.5 mA
Window:
± 5 μA at 0 μA and ± 90 μA at 2 mA

4. Many other signals: validity window on magnet settings, cavity voltages, ...

High Power Resonators

f = 50.63 MHz

 U_{max} = 1.2 MV (presently 0.85 MV \rightarrow 186 turns in cyclotron, goal for 3 mA: 165 turns) 400 kW power transfer to the beam per cavity

- less wall losses
- higher gap voltage
- better cooling distribution

deformation from air pressure ~20 mm hydraulic tuning devices in feedback loop \rightarrow regulation precision ~10 μm

Assymetries in cavities lead to decoupled RF-power

- multipacting
- · electrons are excited resonnantly
- rest gas is ionized
- ions sputter isolators with thin layers
- heat deposition on trim coils

$$f = \frac{q \cdot B}{2\pi \cdot m}$$
$$f = 150MHz \Longrightarrow B = 50G$$

Electrostatic Elements

Extraction Channel EEC 145 kV 0 cm ab Oberfläche Grounded tungsten stripes FREEREN FREEREN FREEREN FREEREN STATE 8103 Grounded tungsten stripes **RF-shielding** -

Graphit RF-Absorber (maybe show or not?)

PAUL SCHERRER INSTITUT

User threshold = 1 mA = available

Beam trips cause 5%