Latest TOTEM results

Leszek Grzanka

AGH University of Science and Technology, Kraków, Poland, Cyclotron Centre Bronowice, Institute of Nuclear Physics (IFJ PAN), Kraków, Poland,

on behalf of the TOTEM Collaboration

Low-X meeting 1-5.09.2015 Sandomierz, Poland

TOTEM experiment - detectors

T1

LHC Run I measurements

- Elastic scattering : total & differential cross section measured at 7 and 8 TeV, large |t|-interval (0.0006 to 2.5 GeV²) (EPL 95 (2011) 41001, EPL 101 (2013) 21002, EPL 101 (2013) 21004)
- Total cross section at 7 & 8 TeV: several methods (EPL 101 (2013) 21004, PRL 111 (2013) 012001)
- Inelastic scattering cross section at 7 & 8 TeV (EPL 101 (2013) 21003, EPL 101 (2013) 21004)
- Charge particle distribution 7 & 8 TeV: TOTEM alone & CMS-TOTEM (EPL 98 (2012) 31002, Eur. Phys. J. C (2014) 74:3053, Eur. Phys. J. C (2015) 75:126)
- Double diffraction cross-section (*Phys. Rev. Lett. 111 (2013) 262001*)
- Total, inelastic and elastic cross section at $\sqrt{s}=2.76$ TeV : in progress
- Single Diffraction cross section: in progress
- Single diffractive dijet cross section: in progress
- Central diffraction (soft, dijets) : in progress
- Quasi-elastic process in pA : in progress
- Other channels investigated, producing perfomance/feasibility results due to the limited statistics

Measurements at 8 TeV - forward ch. particles dens.

Measurement of the forward charged particle pseudorapidity density in pp collisions at $\sqrt{s} = 8$ TeV

Total cross-section measurements

Compilation of the pp cross-section measurements

Measurements at 7 TeV - elastic pp

Elastic differential cross-section

Measurements at 8 TeV - elastic pp

7M el. events, β*=90m, 0.027 < |t| < 0.2 GeV² σ_{el} = **27.1** ± 1.4 mb

PRL 111, 012001 (2013)

seems perfectly exponential, but...

Ruling-out purely exponential approach

Differential cross-section as a relative difference from reference exponential. *Nucl. Phys. B* (2015) 527-546

Purely exponential form excluded at 7.2 σ significance.

The Coulomb-hadronic interface

 F^{C+H} = F^{C} + F^{H} exp(ia Ψ) $|F^{H}|$ - constrained by measurement in nucl. region arg(F^{H}) - little guidance by data

Measuring elastic scattering at |t| down to 6*10⁻⁴ GeV² to investigate Coulomb-nuclear interference Different nuclear phase models:

• constant phase

• arg
$$F^{H}(t) = p_{0}$$

- central phase
 - arg $F^{H}(t) = \pi/2$ atan (cotp₀/(1 t/t₀))
- peripheral phase

• arg $F^{H}(t) = p_0 + \xi_1 | t/t_0 |^{\kappa} \exp(vt)$

The Coulomb-hadronic interface

Parabolic exp. slope, peripheral phase with fixed shape models fitted to two data samples ($\beta^*=90m$ and 1000m)

- Red data points β*=1000m (low |t|)
- Blue data points β*=90m
- solid line coulomb+hardonic fit
- dashed line hadronic only fit

Ongoing study of phase models and ρ value choices.

Hadronic slope	Constant phase	Peripheral phase
Nb=1 (exponential)	excluded	disfavoured
Nb=3 (parabolic)	possible	possible

CMS-TOTEM Precision spectrometer (CT-PPS)

CMS-TOTEM

CMS-TOTEM

PRECISION PROTON SPECTROMETER

see K. Piotrzkowski talk

Timing measurements in Vertical Roman Pots of the TOTEM experiment

Run II first datataking

<u>June 2015:</u>

- Several milions min. bias events: T1, T2 ("LHCf fills")
- Beam optics $\sqrt{s}=13$ TeV $\beta^*=19m$

August 2015:

- Data taken with CMS and TOTEM (T2,RP) standalone during "VdM fills"
- Beam optics $\sqrt{s}=13$ TeV $\beta^*=19m$
- Collected ~ 40nb⁻¹ integrated luminosity
- Experience gained before next datataking with β*=90m.
- pileup μ ~ 0.5
- Trigger:
 - RP single/double arm
 - CMS dijet, muon

Proton tracks in RP station at 220m (sector 56)

Planned measurements for Run II

- Total, inelastic and elastic cross section at 13 TeV
- Central (Exclusive) Diffraction:
 - low mass resonances & glueballs candidates
 - ccbar production (χ_c , J/ ψ , ...)
 - search for missing mass signal
- Single and Central diffraction jet production
- Single diffractive J/ψ , W and Z production

Physics programme: central diffractive processes

- both proton survive with momentum losses (ξ_1, ξ_2)
- excellent η coverage TOTEM+CMS
- feasibility studies using $\beta^*=90m$ 2012 data
- event selection by kinematics comparison:

 M_{pp} ?=? $M_{central}$ (the same with P_{Tz} & vertex)

- missing mass searches
- exclusive central diffractive jets production
- glueball studies

Glueball studies

- Pomeron ~ colourless gluon pair/ladder, likely to produce glueballs
 - Candidates for 0⁺⁺ glueball: $f_0(1500)$ or $f_0(1710)$ favoured by QCD
- $f_0(1500)$ mass, decay channels, branching ratios known, $f_0(1710)$ lack of data
- Goal: characterise $f_0(1710)$ and compare with known $f_0(1500)$
- CMS+TOTEM data from 2012 show sensitivity to $f_0(1710) \rightarrow \rho \rho \rightarrow 4\pi$

Need 0.6 pb⁻¹ of data to have

feasible decay characterisation

Glueball studies

Spin analysis of $f_0(1710) \rightarrow \rho\rho \rightarrow 4 \pi$ to determine J=0 or 2:

Azimuth angle difference $\Delta \phi$ between $\pi^+\pi^-$ pairs

Distinction from neighbouring resonances and non-resonant background: spin analysis in mass bins < 40 MeV needs \sim 5 pb⁻¹

Future prospects - diamond TOF detectors

Overview:

- expected high pileup ($\mu \sim 0.5$) in 2016 data ($\beta^* = 90m$)
- time-of-flight difference leads to vertex position at IP
- longitudinal vertex reconstruction (few cm resolution) needed to couple TOTEM and CMS datasets via vertex location

Objective:

- 4 timing detectors per arm in vertical RPs
- Detector installation foreseen later in 2015
- 50 ps resolution per arm (100 ps per detector) enough since at β*=90m the pileup μ < 0.6
- adjusted track occupancy

Future prospects - diamond TOF detectors

Outlook:

- ongoing studies on the performance (TOF vs capacitance)
- 100 ps / plane resolution achieved during last measurements on test beam data (PRELIMINARY)

Conclusions

- Extensive measurements @ Run I : done, published.
- Ongoing analyses on run I data
- Starting the analysis of first run II data
- To fullfill "challenging" physics programme:
 - Dedicated run at $\beta^*=90 \text{ m}$: ~1 pb⁻¹ of data for low-mass central diff. spectroscopy (2015)
 - Finalisation and installation of diamond timing detectors (2015)
 - Runs at $\beta^*=90m$ with timing detectors pileup ~0.5-1 acceptable (2016)
 - Runs at β^* ~2500m for more studies of Coulomb-nuclear interference (2016)