[Dipole evolution](#page-3-0) ˇ

Saturation effects in small *x* **Physics**

Gösta Gustafson

Department of Theoretical Physics Lund University

Low-x Workshop, Sandomierz $1 - 6$ Aug., 2015 Work in coll. with L. Lönnblad, C. Bierlich and ???

> 4日下 ←←

Questions:

- Multiple collisions give many overlapping strings Can they interfere and form "ropes"? How does this affect the hadronization?
- Conclusions about hydro expansion and plasma formation depend strongly on the initial state
	- How do coherence effects influence the initial partonic state?
	- How can this be studied in inclusive cross sections?

つひへ

Content

- 1. The Dipole Cascade model DIPSY
- 2. Rope formation in *pp* collisions
- 3. Initial state in *pA* and γ [∗]*A* collisions
	- a. General features of pA and γ^*A collisions
	- b. Colour interference between different nucleons
	- c. Comparisons with Glauber model

4. Conclusions

つひへ

1. Dipole evolution

Mueller's Dipol model:

LL BFKL evolution in transverse coordinate space Gluon emission: dipole splits in two dipoles:

Emission probability: $\frac{d\mathcal{P}}{dy} = \frac{\bar{\alpha}}{2\pi}d^2\bm{r}_2\frac{r_{01}^2}{r_{02}^2r}$ 2 12

4 O F

Dipole-dipole scattering

Single gluon exhange \Rightarrow Colour reconnection between projectile and target

Multiple subcollisions handled in eikonal approximation BFKL stochastic process with independent subcollisions:

The Lund cascade model, DIPSY

(E. Avsar, GG, L. Lönnblad, Ch. Flensburg)

Based on Mueller's dipole model in transverse space Includes also:

- ► Important non-leading effects in BFKL evol. (most essential rel. to energy cons. and running α_s)
- \triangleright Saturation from pomeron loops in the evolution (Not included by Mueller or in BK)
- ◮ Confinement ⇒ *t*-channel unitarity
- \triangleright MC DIPSY; includes also fluctuations and correlations
- \blacktriangleright Applicable to collisions between electrons, protons, and nuclei (proton \sim 3 dipoles in a triangle)

つひへ

[Content](#page-1-0) [Dipole evolution](#page-3-0) **[Ropes](#page-9-0)**

ˇ

Saturation within evolution

Multiple interactions ⇒ colour loops ∼ pomeron loops

Gluon scattering is colour suppressed *cf* to gluon emission ⇒ Loop formation related to identical colours.

Multiple interaction in one frame \Rightarrow colour loop within evolution in another fra[me](#page-5-0)

7 Gösta Gustafson Lund University

 α

Colour loop formation in a different frame

[Content](#page-1-0) [Dipole evolution](#page-3-0) **[Ropes](#page-9-0)** ˇ

Same colour \Rightarrow quadrupole

May be better described by recoupled smaller dipoles

⇒ smaller cross section: fixed resolution \Rightarrow effective $2 \rightarrow 1$ and $2 \rightarrow 0$ transitions

Is a form of colour reconnection

Including the "colour swing" makes the result almost frame independent

Not included in Mueller's model or in BK equation

つひへ

[Dipole evolution](#page-3-0)

Some results from DIPSY

pp total and elastic cross sections

ˇ

Effects of high parton densities in high energy pp
B and Costa Gustafson

Lund University

경기 지경

Kロト K伊 K

 290

Dipole evolution [Ropes](#page-9-0) [Collisions with nuclei](#page-15-0) ˇ

2. Final state saturation, Ropes

(C. Bierlich, GG, L. Lönnblad, A. Tarasov, arXiv:1412.6259, JHEP 2015)

Old problem: *s/u* ratio higher in *pp* than in e^+e^- LHC: Higher fractions of strange particles and baryons

Old proposal (Biro-Nielsen-Knoll 1984): Many strings close in transverse space may form "ropes"

 E fiects of high parton densities in high energy pp \overline{E}

Dipole evolution [Ropes](#page-9-0) [Collisions with nuclei](#page-15-0) ˇ

DIPSY: Extension of strings in (**r**⊥, *y*)-space in *pp* at 7 TeV

Radius set to 0.1 fm for more clear picture String diameter ∼ 1 fm ⇒ a lot of overlap

4日下

Assume strings within a radius *R* **interact coherently**

Rope formation:

Add uncorrelated colour charges: Random walk in 2-dim. colour space

Ends up in a SU(3) multiplet $\{p, q\}$: *p coherent* triplets and *q coherent* antitriplets $\text{Multiplicity: } \frac{1}{2}(\rho + 1)(q + 1)(\rho + q + 2)$

Rope tension:

Lattice calc. \Rightarrow prop. to Casimir operator $C_2 \propto \frac{1}{4}$ $\frac{1}{4}(p^2+pq+q^2+3p+3q)$

つへへ

Rope fragmentation:

Assume: Stepwise break up by $q\bar{q}$ pair creation: $p \rightarrow p - 1$ or $q \rightarrow q - 1$ (in total $p + q$ steps)

Energy released in one step gives "effective string tension" $\kappa_{\textit{eff}}/\kappa_0 = C_2(\{p,q\}) - C_2(\{p-1,q\}) = \frac{1}{4}(2p+q+2)$ break up \propto *exp* $\left\{ -\frac{\pi}{\kappa_{\bm e}}\right\}$ $\frac{\pi}{\kappa_{\textit{eff}}}(\mu^2+\pmb{p}_\perp^2)\Big\}$

Result:

- a) Fewer breaks needed to neutralize the colour charges. (Effect similar to the recouplings in PYTHIA)
- b) Higher effective string tension
	- ⇒ more baryons more strange particles more *p*[⊥]

 200

Dipole evolution [Ropes](#page-9-0) [Collisions with nuclei](#page-15-0) ˇ

Ex.: 3 uncorrelated triplets

 $\{3, 0\} = 10:$

rope tension 4.5 κ_0 ; decays in 3 steps

$$
\{1,1\}=8:\quad \overbrace{\qquad \qquad }
$$

rope tension 2.25 κ_0 ; decays in 2 steps

$$
\{0,0\}=1;\qquad \mathring{7}\qquad \qquad \mathring{\zeta}
$$

no force field

4日下 ∢ 伊 ▶ 4回 ▶ 4回

Dipole evolution [Ropes](#page-9-0) [Collisions with nuclei](#page-15-0) ˇ

Results

R atios p/π and $Λ/K_s^0$ *vs* $p_⊥$ at 200 GeV. Data from STAR.

 299

K ロ ト K 御 ト K 澄 ト K 差

Ropes [Collisions with nuclei](#page-15-0) ˇ

3. Collisions with nuclei

DIPSY gives full partonic picture, dense gluon soup.

Ex.: *Pb* − *Pb* 200 GeV/*N*

Accounts for:

saturation within the cascades,

correlations and fluctuations in partonic state,

finite size effects

16 Gösta Gustafson Lund University

つひへ

Ropes [Collisions with nuclei](#page-15-0) ˇ

Initial state in *pA* **and** γ [∗] *A* **collisions** (GG, L. Lönnblad, A. Ster, T. Csörgő, arXiv:1506.09095)

Essential for interpretation of collective final state effects from plasma formation and hydro expansion

Study coherence effects in the initial state via total, elastic, and diffractive cross sections

 E fiects of high parton densities in high energy pp \overline{E}

つくい

[Collisions with nuclei](#page-15-0) ˇ

Test: DIPSY agrees with CMS and LHCb inelastic cross section

pPb inelastic cross sections

4日下 ←←

[Ropesˆ](#page-9-0) [Collisions with nuclei](#page-15-0)

a. General features: *pA* **collisions**

ˇ

Scaling features:

Transparent limit Black limit

 $\sigma_{tot}^{\rho A} \approx A \sigma_{tot}^{\rho \rho}$

pp interaction rather close to black

γ^* *A* collisions

(Note: $\gamma^* \to q\bar{q}$ frozen during passage through nucleus)

 $\gamma^* p$ scaling closer to $\sim A\,\sigma_{tot}^{\gamma^*}.$

More transparent (and more so for high *Q*²) ⇒ dynamic effects more visible

← ロ ▶ → 伊

Ropes [Collisions with nuclei](#page-15-0) ˇ

b. Colour interference between different nucleons

Ratio: *no colour interference between different nucleons include colour interference*

Small effect for *pA*, which is close to black \sim 10% effect for γ^* Au, which is more transparent

Approximately independent of energy

21 Gösta Gustafson Lund University

4 0 8

ˇ **c. Comparison with Glauber model**

"Black disc" approximation frequently used \Rightarrow no diffr. excit.; $\sigma_{el} = \sigma_{inel} = \frac{1}{2}$ $rac{1}{2}$ ^{σ}tot

Adjust disc radius to fit $\sigma_{\mathit{inelND}}^{\mathit{pp}}$:

Ropes [Collisions with nuclei](#page-15-0) ˇ

Similarly: Glauber black disc adjusted to fit σ_{tot}^{pp} *tot* \Rightarrow agreement for $\sigma_{tot}^{\rho A}$ but not for $\sigma_{ine}^{\rho A}$ *inelND*

Ex.: Results for *pPb* at 5 TeV:

DIPSY: $\sigma_{tot} = 3.54$ b, $\sigma_{inelND} = 1.89$ b

Glauber: $\sigma_{tot} = 3.50$ b, $\sigma_{inelND} = 1.75$ b

Also more advanced Glauber models exist (e.g. a gray disc or a Gaussian density distribution)

Important to know what kind of Glauber is used How are diffractive events handled?

Conclusions

Final state interaction

Many overlapping strings also in pp coll. \rightarrow rope formation Random walk in colour space \rightarrow random colour multiplet

Stepwise breakup by $q\bar{q}$ pairs \rightarrow fewer breaks, higher effective string tension (κ_{eff}) given by reduction in rope tension caused by the break) \rightarrow more strangness, more baryons

Nucleus interaction, saturation in initial state

 pA : rather black \Rightarrow small effects

 $\gamma^* A$: more transparent \Rightarrow more clear signals

Cf with Glauber: Which Glauber version is very important, and how is diffraction handled? **← ロ → → イ 同 → →**

Extra slides

Effects of high parton densities in high energy pp and participate Gösta Gustafson

É **Lund University**

 299

メロトメ 倒 トメ ミトメ ミト

Λ/ \mathcal{K}^0_s ratio *vs* rapidity at 0.9 and 7 TeV. Data from CMS

Effects of high parton densities in high energy pp
26 Gösta Gustafson

∍ **Lund University**

 290

重

ミト \mathcal{A} .

 \sim

Kロト K伊 K

Enhancement of particle ratios *vs* [√] *s.*

경계 세종 \rightarrow

K ロ ▶ K 伊 ▶

 299

Final states

cf. ATLAS data

η distrib. charged particles *Nch* in transv. region 0.9 TeV 7 TeV *vs plead* ⊥ , 7 TeV

Min bias **Underlying event**

Our aim to get dynamical insight, not to give precise predictions At present no quarks, only gluons イロメ イ押 メイヨメ イヨメ

[Effects of high parton densities in high energy pp and pA collisions](#page-0-0)

Lund University

Correlations

Double parton distributions

Correlation function *F*(*b*). Depends on both *x* and *Q*²

Spike (hotspot) developes for small *b* at larger *Q*²

Fourier transform: $D(x_1, x_2, Q_1^2, Q_2^2)$; ∆) ~ (Blok *et al.*)

Spike for s[m](#page-29-0)[al](#page-28-0)l $b \Rightarrow$ $b \Rightarrow$ $b \Rightarrow$ $b \Rightarrow$ tail for large mome[n](#page-22-0)tum imbalan[c](#page-23-0)[e](#page-30-0) Δ

29 Gösta Gustafson Lund University

Saturation in final state interaction

Exclusive final states

BFKL is a stochastic process: Independent dipole-dipole interactions

Non-interacting branches cannot come on shell have to be removed

- To get final states: $\qquad \qquad$ Determine which dipoles interact
	- Absorbe non-interacting chains
	- Determine fina[l s](#page-28-0)t[at](#page-30-0)[e](#page-28-0) [ra](#page-29-0)[d](#page-30-0)[i](#page-22-0)[a](#page-23-0)[t](#page-30-0)[io](#page-31-0)[n](#page-22-0)

 E fiects of high parton densities in high energy pp \overline{E}

 α

Hadronization

Multiple collisions gives many gluons connected by strings.

⇒ Saturation effects before hadronization

PYTHIA: Colour reconnection gives gluons connected by "short strings"

DIPSY: Reconnections in final state similar to the swing in initial cascade

4 0 8

Finally adding hadronization gives final states

つくい

Diffraction

Fluctuations cause Diffractive excitation Good–Walker formalism

Projectile with a substructure

Mass eigenstates, Ψ*^k* , can differ from the eigenstates of diffraction, Φ*ⁿ*

Elastic amplitude: $\langle \Psi_{in}|T|\Psi_{in}\rangle = \langle T\rangle$, *d* $\sigma_{el}/d^2b = \langle T\rangle^2$

Total diffractive cross section (incl. elastic):

*d*σ_{diff} / $d^2b = \sum_k \langle \Psi_{in} | T | \Psi_k \rangle \langle \Psi_k | T | \Psi_{in} \rangle = \langle T^2 \rangle$

$$
d\sigma_{\text{diff ex}}/d^2b = d\sigma_{\text{diff}} - d\sigma_{\text{el}} = \langle T^2 \rangle - \langle T \rangle^2 = V_T
$$

What are the diffractive eigenstates?

Parton cascades, which can come on shell through interaction with the target.

BFKL dynamics \Rightarrow Large fluctuations,

Continuous distrib. up to high masses

(Also Miettinen–Pumplin (1978), Hatta *et al.* (2006))

4 E E

Collisions with nuclei **[Diffraction](#page-31-0)**

Relation Good–Walker *vs* **triple-pomeron**

Stochastic nature of the BFKL cascade ⇒

Good–Walker and Triple-pomeron describe the same dynamics

(PL B718 (2013) 1054)

Without saturation: DIPSY results have the expected triple-regge form

$$
\frac{d\sigma_{SD}}{d\ln M^2}\sim g_{\rho P}^3g_P(\frac{s}{M^2})^{2(\alpha_P-1)}\,(M^2)^{\alpha_P-1}
$$

- □ ▶ - < @

Born amplitude reproduced with single pomeron pole $\alpha(0) = 1.21, \alpha' = 0.2 \,\text{GeV}^{-2}$

Collisions with nuclei **[Diffraction](#page-31-0)**

Include saturation in the MC

pp 1.8 TeV Single diffractive cross section for $M_X^2 < M_{max}^2$

Shaded area: Estimate of CDF result

Not[e](#page-33-0): Tuned only to σ_{tot} σ_{tot} σ_{tot} σ_{tot} σ_{tot} and σ_{el} . No new p[ara](#page-33-0)mete[r](#page-35-0)

 E fiects of high parton densities in high energy pp \overline{E}

35 Gösta Gustafson Lund University Control of the Control of the Lund University

Impact parameter profile

Saturation ⇒ Fluctuations suppressed in central collisions Diffr. excit. largest in a circular ring,

expanding to larger radius at higher energy

Factorization broken between *pp* and DIS

Exclusive final states in diffraction

- If gap events are analogous to diffraction in optics \Rightarrow
- Diffractive excitation fundamentally a quantum effect
- Different contributions interfere destructively, no probabilistic picture
- Still, different components can be calculated in a MC, added with proper signs, and squared
- Possible because opt. th. \Rightarrow all contributions real
- (JHEP 1212 (2012) 115, arXiv:1210.2407)

(Makes it also possible to take Fourier transform and get *dσ/dt*. JHEP 1010, 014, arXiv:1004.5502)

④個 ▶ ④ ヨ ▶ ④ ヨ ▶

Collisions with nuclei **[Diffraction](#page-31-0)**

Early results for DIS and *pp*

H1: $W = 120$, $Q^2 = 24$ *dn_{ch}*/*d_n* in 2 M_X -bins

UA4: $W = 546$ GeV $\langle M_X \rangle$ = 140 GeV

Too hard in proton fragmentation end. Due to lack of quarks in proton wavefunction

Has to be added in future improvements

Note: Based purely on fundamental QCD dynamics

(JHEP 1212 (2012) 115, arXiv:1210.2407)
Of high parton densities in high energy pp and parts Gustafson

Lund University