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At low energy hadrons consists of relatively small number of partons. 
As the collision energy (rapidity) increases, new partons are emitted 
(Weizsacker Williams radiation). 

As long as the density of partons remains small, new particles are 
created linearly (BFKL): the number of new partons due to the increase 
in collision energy is proportional to the number of the emitting 
partons (so the density grows exponentially).
Unfortunately, BFKL solutions suffer from two problems:
a. Infrared Diffusion
b. Unitarity Violation - the cross sections computed by using BFKL 
grow as              and thus violate the Froissart bound.

How scattering amplitudes and cross sections depend 
on the collision energy      ?



Eventually gluons start overlapping with each other and new parton emission 
become a collective process. 
Emission process becomes non-linear and leads to gluon saturation 
phenomena (also known as Color Glass Condensate (CGC) / JIMWLK). Gluon 
density grows logarithmically instead of exponentially (as in the case of BFKL).

What happens if we push to higher 
collision energy?

Boost



What is happening to a boosted state?
As we are dealing with fast particles, we will use the Eikonal approximation 
approach together with light-cone formalism. The advantage of this 
formalism is that boosting the LC hadronic wave function is simple:
 

We separate the momenta in the following way: gluons with
will be called soft, while those with                      will be called valence.

As the figure below suggest, by increasing the C.O.M energy (boosting) we 
are creating more valence particles.



What is JIMWLK Equation?
The JIMWLK equation,                                 , describes the rapidity (denoted by Y) 
evolution of observables      in a dilute-dense scattering process. At the leading 
order, it consists of three terms - interaction of the probe with the target fields, 
and two virtual terms:

  

     

The target is modeled by a fixed background field A. The S-matrix of a fast 
particle interacting with a gluonic field A is the Wilson line (Eikonal 
approximation):

x is a two dimensional transverse coordinate (LC gauge). As expected, JIMWLK 
reduces to BFKL for low probability of scattering.
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The LO JIMWLK Equation
The JIMWLK Hamiltonian can be obtained by computing the 
expectation value of the S-matrix operator (expanded to first order in 
longitudinal phase space):

Where       is the soft part of the wave function. The general expression 
for the LO wave function in momenta space (before normalization) is:

Where Hg denotes the relevant part in the QCD Hamiltonian at leading 
order (in the Eikonal approximation) which reads:



We can transform the wave function to coordinate space:

After normalization, we can use the LO wave-function in order to write
the LO JIMWLK Hamiltonian:

This Hamiltonian describes the evolution of scattering amplitudes for 
large values of rapidity. It is a non-linear functional equation and it 
takes into account both linear growth as well as saturation effects. 

JL and JR are operators acting on
Wilson lines as rotations:



The LO JIMWLK is only a first term in an infinite perturbative series:

The NLO term is necessary because:
a. NLO corrections are known to be large.

b. Built-in information on the running coupling - better phenomenology. 
The running is known to slow down the evolution.

c. To get the region of applicability of the leading order equation.

d. Important step towards all order resummation.

Motivations for NLO JIMWLK Equation 



The NLO Wave Function

Where there is a summation over the different states, which can possibly be:
One soft gluon, two soft gluons or quark anti-quark state.
       is the sum of all non-kinetic terms in the light-cone Hamiltonian (notice that in 
light-cone gauge we have also instantaneous interactions). Based on the above 
expression we can write the general form of the NLO wave function:

My interest was to determine the 10 unknown coefficients.



Diagrammatic Representation

In total around 30 diagrams, time ordering is important.



The General Form of 
NLO JIMWLK Hamiltonian

The 5 kernels can be found based on dipole and baryon evolution.



UV and IR Divergences
Many of the diagrams we are calculating diverge. In order to 
make them finite we are using the following regularizations:

1) Dimensional regularization on the transverse momenta.

2) Sharp cutoff on the longitudinal momenta. The minimal 
possible longitudinal momenta will be denoted by     . 
These divergences cancel between the different diagrams. 



Explicit Example - JSJ Kernel



Kernel JSJ
By adding together all the different contributions, 
and after multiplying by the conjugate wave 
function, we find (after performing Fourier 
transform):

Notice that as we expect, all the IR divergences 
(terms which involve            and                 ) were 
canceled at the final result.



From the Wave Function to the 
Kernel JSJ



Subtraction of the (LO)^2 
Contributions

The contribution which corresponds to (LO)^2 
can be written as:

This contribution does not correspond to the 
same power of logs of rapidity we are trying to 
resum, therefore this contribution has to be 
subtracted.



Current Status of the Calculation
Kernel Calculated? Comparison with 

previous papers
(1405.0418, 1310.0378)
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Conclusions
1)The light-cone was shown to be an efficient tool 

for calculating the NLO correction.
2)As expected the IR divergences disappear after 

adding all the relevant contributions together.
3)The coefficient of           in the wave-function 

exactly corresponds to (LO)^2. 
4)So far the results are consistent with our previous 

works based on Balitsky, Chirilly and Grabovsky. 



The Kernels for Gauge Invariant Operators 
(color singlet amplitudes)


