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Outline
•String/Gauge Duality:       

•Unification and Universality

•Inclusive Central Production:

•Universal features -Witten Diagram

• Exclusive vs Inclusive: fixed-angle scattering/dim. counting rule

• p
T
-spectra for central production

•Conformal Regge Theory

•Pomeron Spectral Curve in Strong Coupling

•Pomeron and Odderon Intercepts in strong coupling 



HE scattering since AdS/CFT

II. Unification and Universality:

Gauge/String Duality (AdS/CFT) 2-GLUONS � GRAVITON

•  “Pomeron” in QCD non-perturbatively,

•  Unification of Soft and Hard Physics in High Energy Collision,

•  Confinement Important,

• Looking for Generic Features following from Conformal Invariance!!



HIGH ENERGY SCATTERING <=> POMERON 

WHAT IS THE POMERON ?

F.E. Low. Phys. Rev. D 12 (1975), p. 163. 
S. Nussinov. Phys. Rev. Lett. 34 (1975), p. 1286. 

J = 2

AdS Witten Diagram: Adv.
 Theor. Math. Physics 2 (1998)253
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Gauge-String Duality: AdS/CFT

Aab
µ (x), �a

f (x)
Weak Coupling:

Gluons and Quarks:
Gauge Invariant Operators: �̄(x)�(x), �̄(x)Dµ�(x)

S(x) = TrF 2
µ⇥(x), O(x) = TrF 3(x)

Tµ⇤(x) = TrFµ�(x)F�⇤(x), etc.

Strong Coupling:
Metric tensor:
Anti-symmetric tensor (Kalb-Ramond fields):

Gmn(x) = g(0)
mn(x) + hmn(x)

bmn(x)

Other differential forms: Cmn···(x)

L(x) = L(G(x), b(x), C(x), · · · )

Dilaton, Axion, etc. �(x), a(x), etc.

L(x) = �TrF 2 + �̄ ⇤D� + · · ·
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Bulk Degrees of Freedom from type-
IIB Supergravity on AdS5:

⇤e
R

d4x�i(x)Oi(x)⌅CFT = Zstring [�i(x, z)|z�0 � �i(x)]

Supergravity limit

Strong coupling 

Conformal 

Pomeron as Graviton in AdS



HE scattering since AdS/CFT

Background and Motivation

The AdS/CFT is a holographic duality
that equates a string theory (gravity) in high dimension
with a conformal field theory (gauge) in 4 dimensions.
Specifically, compactified 10 dimensional super string theory
is conjectured to correspond to N = 4 Super Yang Mills theory
in 4 dimensions in the limit of large ’t Hooft coupling:
� = gsN = g2

ymNc = R4/↵02 >> 1.

ds

2 =
R

2

z

2

⇥
dz

2 + dx · dx
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+ R

2
d⌦5 ! e

2A(z)
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dz

2 + dx · dx

⇤
+ R

2
d⌦5

For AdS, A = � log(z/R). As The function A(z) is changed for z large, the

space is “deformed” away from pure AdS

“Soft-Wall”: A(z)! � log(z/R) + (⇤z)

2



One Graviton Exchange at High Energy

• Draw all “Witten-Feynman” Diagrams in AdS5, 

• High Energy Dominated by Spin-2 Exchanges:

1 Introduction

Paper I: AdS5 Witten Diagrams at high energy. Effective Lagragian. Remark on BPST

Pomeron paper. Eikonal anzats.

Paper I: Box diagram and Shock wave eikonal sum

Here we reformulate the computaiton of Witten diagrams in AdS5 space with and without a IR

cut-off suitable for the study of hight energy scattering. This provides a framework for going

beyond the leading large N limit studied in BPST Regge limit in the extreme super gravity

approximaiton.

2 Basics

p1 + p2 → p3 + p4 (2.1)

S =

∫

dz
√

g
{

∂Mφ(z)gMN∂Nφ(z) + ∆(∆− d)φ2(z)
}

(2.2)

where d = 4, and the AdS5 background metric is

d2z =
1

z2
0

{

dxµdxµ + d2z0

}

(2.3)

Scalar propagator:

⟨φ∆(z)φ∆(w)⟩ = G(5)
∆ (z,w) (2.4)

satisfies
{

−
1
√

g
∂M

√
ggMN∂N + ∆(∆− d)

}

G(5)
∆ (z,w) = δ5(z − w) (2.5)

Conformal Invariance leads to Isometries of ADS5, G(5)
∆ is a function of

u =
(x − y)2 + (z0 − w0)2

2z0w0
(2.6)

spin S field,

(−∂z0
z−(d−1−2S)
0 ∂z0

+ q2 z−(d+1−2S)
0 + z−(d−1−2S)

0 m2)φ(u) = 0 (2.7)

2

Figure 9: The t-channel exchange graph

As in the past, we simplify the integral by using translation invariance to translate x1 to
0, and then performing an inversion. As a result,

A(w, x1, x3) = |x13|−2∆3I(w′ − x′
13) , I(w) =

∫

H

d5z

z5
0

G∆(w, z)
z∆1+∆3
0

z2∆3
(7.32)

We now use the fact that G∆ is a Green function and satisfies ( w +∆(∆−d))G∆(w, z) =
δ(w, z), so that

( w +∆(∆− d))I(w) =
w∆1+∆3

0

w2∆3
(7.33)

In terms of the scale invariant combination ζ = w2
0/w

2, we have I(w) = w∆13
0 fS(ζ), ∆13 =

∆1 −∆3 and the function fS now satisfies the following differential equation

4ζ2(ζ − 1)f ′′
S + 4ζ [(∆13 + 1)ζ −∆13 + d/2 − 1]f ′

S (7.34)

+(∆−∆13)(∆+∆13 − d)fS = ζ∆3

Making the change of variables σ = 1/ζ , we find that the new differential equation is
manifestly of the hypergeometric type and is solved by

fS(ζ) = F
(
∆−∆13

2
,
d −∆−∆13

2
;
d

2
; 1 − 1

ζ

)
(7.35)

The other linearly independent solution to the hypergeometric equation is singular as
ζ → 1, which is unacceptable since the original integral was perfectly regular in this limit
(which corresponds to w⃗ → 0).

It is easier, however, to find the solutions in terms of a power series, fS(ζ) =
∑

k fSkζk.
Upon substitution into (7.34), we find solutions that truncate to a finite number of terms
in ζ , provided ∆1 +∆3−∆ is a positive integer. Notice that k need not take integer values,
rather k −∆3 must be integer. The series truncates from above at kmax = ∆3 − 1, so that
fSk = 0 when k ≥ ∆3, and

fSk =
Γ(k)Γ(k +∆13)Γ(1

2{∆1 +∆3 −∆})Γ(1
2{∆+∆1 +∆3 − d})

4Γ(∆1)Γ(∆3)Γ(k + 1 + 1
2{∆13 −∆})Γ(k + 1 + 1

2{∆13 +∆− d})
(7.36)

Still under the assumption that ∆1 +∆3 −∆ is a positive integer, the series also truncates
from below at kmin = 1

2(∆−∆13).

73

• Strong Coupling Pomeron has

• Need to consider         finite.

• For QCD, needs confinement to introduce a scale.

J = 2

�



BASIC BUILDING BLOCK
•Elastic Vertex: 

•Pomeron/Graviton Propagator:

Gj(z, x?, z0, x0?) =
1

4⇥zz0
e(2��(j))�

sinh �
,

K(s, b, z, z0) = �
✓

(zz0)2

R4

◆ Z
dj

2�i
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1 + e�i�j

sin �j

◆
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p

2 �1/4
p
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conformal: 

confinement: discrete sumGj(z, x
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0
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ADS BUILDING BLOCKS BLOCKS

d

3b ⌘ dzd

2
x?

p
�g(z) where g(z) = det[gnm] = �e

5A(z)

A(s, t) = g2
0

Z
d3

bd3
b

⇥ eiq?·(x�x

0) �13(z) K(s,x� x

⇥, z, z⇥) �24(z⇥)

A(s, t) = g2
0

Z
d3

bd3
b

⇥ eiq?·(x�x

0) �13(z) K(s,x� x

⇥, z, z⇥) �24(z⇥)

A(s, t) = �13 � eKP � �24 .
For 2-to-2  

For 2-to-3

A(s, s1, s2, t1, t2) = �13 � eKP � V � eKP � �24 ,
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1

2

3

i i+1

i+2

Tn(p1, p2, · · · ) =
Z

dz1dz2 · · ·�1(p1)�2(p2)�3(p3) · · ·

Tn(p1, p2, · · · , z1, z2, z3, · · · )

General Witten Diagram



HE scattering since AdS/CFT

“Improved” Witten Diagrams:

!  Conformal, therefore no scale and no particles, etc.
! Confinement
! Need to consider running coupling in weak coupling

!  Spin-2 leads to too rapid an increase for cross sections. 
! Need to consider                  finite.� = g2N

Additional Steps for QCD:



QCD Pomeron <===> Graviton (metric) in AdS
Flat-space String Confinement

Conformal Invariance Pomeron in AdS Geometry
Fixed cut in J-plane:

Weak coupling:
(BFKL)

Strong coupling:Te



BASIC BUILDING BLOCK
•Elastic Vertex: 

•Pomeron/Graviton Propagator:

Gj(z, x?, z0, x0?) =
1

4⇥zz0
e(2��(j))�

sinh �
,

K(s, b, z, z0) = �
✓

(zz0)2

R4

◆ Z
dj

2�i

✓
1 + e�i�j

sin �j

◆
bsj Gj(z, x?, z0, x0?; j)

�(j) = 2 +
p

2 �1/4
p

(j � j0)

conformal: 

confinement: discrete sumGj(z, x

?
, z

0
, x

0?; j)



1

1

2

3

i i+1

i+2

Tn(p1, p2, · · · ) =
Z

dz1dz2 · · ·�1(p1)�2(p2)�3(p3) · · ·

Tn(p1, p2, · · · , z1, z2, z3, · · · )

General Witten Diagram



N = 4 Strong vs Weak g2Nc

2 4 6 8

0.5

1

1.5

2

j0

αN

Graviton

Two 
Gluon 

BFKL  BPST QCD?

j0 = 2
j0 = 1

j0 = 2� 2/
p

g2Nc
j0 = 1 + ln(2)g2Nc/⇡

2

j0 = 1.25?



HE scattering after AdS/CFT

di�ussion

confinement

At finite �, due to Confinement in AdS,
aymptotical linear Regge trajectories

at t > 0
Unified Hard (conformal) and Soft (confining) Pomeron 



Approx. Scale Invariance and the 5th dimension

r  ! 1r 
rmin

r-Δ

r-Δ

rΔ -4

Hadron Glueball Massive Onium CurrentΦ(r)

IR WALL

z = r�1

1



III. Central Inclusive Spectrum: 

Conformal Invariance? 
Confinement? 

Satuation? 



HE scattering after AdS/CFT

F2(x, Q2) =
Q2

4⇤2�em
[⌅T (⇥�p) +L (⇥�p)]

Optical Theorem

�total(s, Q2) = (1/s)Im A(s, t = 0;Q2)

x � Q2

s

Small x :
Q2

s
� 0



ELASTIC VS DIS  ADS BUILDING BLOCKS

d

3b ⌘ dzd

2
x?

p
�g(z) where g(z) = det[gnm] = �e

5A(z)

A(s, x? � x

0
?) = g

2
0

Z
d

3bd3b0�12(z)G(s, x? � x

0
?, z, z

0)�34(z
0)

for F2(x,Q)

�13(z) ! ��⇤�⇤(z,Q) =
1

z
[Qz)4(K2

0 (Qz) +K2
1 (Qz)]

�T (s) =
1

s
ImA(s, 0)



Central Inclusive Single-Particle Production

a+ b ! c+X

a

b

c

X

2

⇠

a

c̄

b

ā

c

b̄

M

2

Figure 2.2: A schematic representation of the generalized optical theorem given in Eq. 2.63.

2.3.2 The Six-Point String Amplitude

We consider 3 ! 3 scattering of the form abc̄ ! āb̄c, with the intention of computing a six-
point amplitude from which we can find the inclusive single-particle production cross section. The
kinematics of 3 ! 3 scattering are shown in Figure 2.3. We will consider the case when all external
lines are scalar glueballs; however, a similar discussion holds some or all of the external lines are
hadrons [10]. The internal lines are pomerons with Regge trajectory ↵(t

i

) = ↵0 +
↵

0

4 ti. Here, and
again in Section 4, we will take all strings to be open for simplicity; it was shown in [24] that
entirely similar results hold for closed-string scattering.

k

a

k

ā

k

c̄

k

c

k

b

k

b̄

↵ (t1)

↵ (t2)

Figure 2.3: Schematic representation of 3!3 scattering of strings.
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ADS BUILDING BLOCKS BLOCKS

A(s, t) = g2
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Z
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Vc̄,c ⇠ �c �c̄ Vc̄,c(t1, t2, zc,)



Central Inclusive Single-Particle Production

a+ b ! c+X
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the scattering process, and compute the inclusive cross section

�

inc

⌘ d

3
�

ab!cX

dp3
c

. (1.1)

We take the produced particles X to have invariant-mass-squared M

2 = (p
a

+ p

b

� p

c

)2 , but are
otherwise uninterested in the properties of X. We work in the limit in the limit where the center
of mass energy s ! 1. In the context of flat space string theory, this process was studied in [15],
which, following an approach suggested in [16], found that the cross section decays exponentially
in the center of mass energy.

a

b

c

X

Figure 1.1: Inclusive single-particle production. The produced particles X are taken to have
invariant mass-squared M

2.

In [15], the flat-space string theory prediction for this cross section is evaluated by taking ad-
vantage of a generalized optical theorem which relates the desired cross section to the discontinuity
amplitude for 3 ! 3 scattering. We will follow this same method to evaluate the curved space
string theory prediction for the cross-section.

In Section 2, we will discuss flat-space string theory and its application to scattering in gauge
theories. In particular, Section 2.1 features a review of the essentials of flat-space string theory,
which segues in Section 2.2 to a discussion of the simplest possible scattering of strings, the Virasoro-
Shapiro amplitude. In Section 2.3, we will, after a brief discussion of the optical theorem Eq. 2.63,
summarize the results of [15], and derive the flat-space string theory prediction for the inclusive
single-particle production cross section. Next, in Section 3 we will discuss curved space string
theory, starting in Section 3.1 with an overview of the AdS/CFT correspondence before moving on
to a variant of the conjecture compatible with confining field theories in 3.2 and then summarizing
the results of [9] in Section 3.3. Finally, we will in Section 4 compute the curved-space string theory
prediction for the inclusive cross section. We will conclude with a brief discussion of our essential
results in Section 5.
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How to calculate this Mueller Discontinuity within AdS/CFT?

T2!3(p1, p2, p3, pc, p4) =

Z
(dz1

p
g(z1))(dz2

p
g(z1)){ 1(z1) 3(z1)}T2!3(pi; z1, zc, z2){ 2(z2) 4(z2)}

T2!3(pi; z1, z2) = V (z1)

Z
dzc

p
g(zc)K(s1, z1, zc)V (z1)G(t1,, t2, zc) c(zc)V (zc)K(s2, zc, z2)V (z2)

dependence of T flat
6 , and hence of its discontinuity, enters through the s-dependence of . Thus we

can use the optical theorem by calculating the discontinuity of T flat
6 in . Now, the only (possibly)

discontinuous term in this expression for T flat
6 is V6, and hence the -dependence of the discontinuity

in T

flat
6 is given by

Disc
M

2 T
flat
6 = 

�2Disc
M

2 V6. (2.69)

Meanwhile, the only discontinuity in V6 stems from the -discontinuity of V5, so we must have

Disc
M

2 V6 ⇠
Z 1

0
dz z

�⌃2�1 (1� z)�⌃1�1 [Disc
x

V5 (↵ (t1) ,↵ (t2) , x)] . (2.70)

To evaluate this discontinuity, we must examine in detail the behavior of V5(↵ (t1) ,↵ (t2) , x), which
is discussed in Section 2.3.3.

2.3.3 The Five-Point String Amplitude and Its Discontinuties

First we will describe the kinematics of 2 ! 3 scattering of the form ab ! āb̄c, depicted pictorially
in Figure 2.4.

k

a

k

ā

k

c

k

b

k

b̄

↵ (t1)

↵ (t2)

Figure 2.4: Schematic representation of 2 ! 3 scattering of strings.

As before, we take all external lines to be scalar glueballs, and all internal lines to be pomerons.
We define generalized Mandelstam invariants to parameterize the process:

s = (k
a

+ k

b

)2 (2.71a)

s1 = (k
c

+ k

ā

)2 (2.71b)

s2 = (k
c

+ k

b̄

)2 (2.71c)

t1 = (k
ā

� k

a

)2 (2.71d)

t2 = (k
b̄

� k

b

)2 . (2.71e)

We also again define the energy ratio

 =
s1s2

s

. (2.72)
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ā

k

a

k

b̄

k

b

Author:

Richard Nally

Advisor:

Prof. Chung-I Tan

April 2015

the scattering process, and compute the inclusive cross section

�

inc

⌘ d

3
�

ab!cX

dp3
c

. (1.1)

We take the produced particles X to have invariant-mass-squared M

2 = (p
a

+ p

b

� p

c

)2 , but are
otherwise uninterested in the properties of X. We work in the limit in the limit where the center
of mass energy s ! 1. In the context of flat space string theory, this process was studied in [15],
which, following an approach suggested in [16], found that the cross section decays exponentially
in the center of mass energy.

a

b

c

X

Figure 1.1: Inclusive single-particle production. The produced particles X are taken to have
invariant mass-squared M

2.

In [15], the flat-space string theory prediction for this cross section is evaluated by taking ad-
vantage of a generalized optical theorem which relates the desired cross section to the discontinuity
amplitude for 3 ! 3 scattering. We will follow this same method to evaluate the curved space
string theory prediction for the cross-section.

In Section 2, we will discuss flat-space string theory and its application to scattering in gauge
theories. In particular, Section 2.1 features a review of the essentials of flat-space string theory,
which segues in Section 2.2 to a discussion of the simplest possible scattering of strings, the Virasoro-
Shapiro amplitude. In Section 2.3, we will, after a brief discussion of the optical theorem Eq. 2.63,
summarize the results of [15], and derive the flat-space string theory prediction for the inclusive
single-particle production cross section. Next, in Section 3 we will discuss curved space string
theory, starting in Section 3.1 with an overview of the AdS/CFT correspondence before moving on
to a variant of the conjecture compatible with confining field theories in 3.2 and then summarizing
the results of [9] in Section 3.3. Finally, we will in Section 4 compute the curved-space string theory
prediction for the inclusive cross section. We will conclude with a brief discussion of our essential
results in Section 5.
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Fixed Angle Exclusive Scattering

T (p1, p2, · · · ) =
Z Y

i=1,2,3,4···
{(dzi

p
g(zi)) i(zi)}T (pi; zi)

!
Z

(dz
p
g(z))

Y

i=1,2,3,4···
{ i(z)}T̄ (zpi)

Assuming that pi ⇠
p
s, and ¯T (zpi) ' e�z/zsc(s)

where zsc '
p
s, it follows

T (p1, p2, · · · ) ⇠ (

p
s)�(n�4)

where n =

P
�i.

With spin, ni becomes twist, where

ni = ⌧i = �i � Si.
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Inclusive Production
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Inclusive Production

a+ b ! c+X
d�

(d3k/E)
= (1/s)(1/2i)DiscM2 T3!3(ka, kb, k

0
c; k

0
a, k

0
b, kc)

d�

d2pt
|y=0 ⇠ s↵0�1��c ⇠ p�2�c

t
d�

d2pt
|y=0 ⇠ p�8

t

• can also treat other regions, e.g., triple-Regge limit

• can be generalized to multi-particle inclusive production

• study both conformal behavior and effects of 
Confinement

d�

d2pt,1d2pt,2 · · ·
|y=0 ⇠ p�2

P
�i

t

(gluon dominance)



IV: Pomeron in the conformal Limit, 
OPE, and Anomalous Dimensions 

Massless modes of a closed string theory: 

Need to keep higher string modes 

                            As CFT, equivalence to OPE in strong coupling:   using AdS 

Gmn = g0
mn + hmn



QCD EMERGENCE OF 5-DIM ADS 



Simultaneous compatible large Q2 and small x evolutions!

�2 = 0

Energy-Momentum Conservation built-in automatically.

MOMENTS AND ANOMALOUS DIMENSION

�(j) = 2 +
p
2

qp
g2Nc(j � j0)

�n = 2
q

1 +
p

g2N(n� 2)/2� n

Mn(Q2) =
R 1
0 dx x

n�2
F2(x, Q

2)! Q

��n



Graviton/Pomeron Regge trajectory [Brower, Polchinski, Strassler, Tan 06]

• Operators that contribute are the twist 2 
operators

OJ ⇠ F↵[�1
D�2 . . . D�J�1F

↵
�J ]

• Dual to string theory spin J field in leading 
Regge trajectory

�
D2 �m2

�
ha1...aJ = 0

m2 = �(�� 4)� J , � = �(J)

• Diffusion limit

J(�) = J0 +D (�� 2)2 m2 =
2

↵0 (J � 2)� J

L2)

2

4

1 2 4

⇠ ln J

BFKL

J

�� 2

GRAVITON



e�(S)2 = ⌧2 + a1(⌧,�)S + a2(⌧,�)S2 + · · ·

POMERON AND ODDERON IN STRONG COUPLING:

B.Basso, 1109.3154v2

POMERON

ODDERON

Solution-a:

Solution-b:

Brower, Polchinski, Strassler, Tan

Costa, Goncalves, Penedones (1209.4355)

Kotikov, Lipatov (1301.0882)

Kotikov, Lipatov, et al.

↵p = 2� 2
�1/2

� 1
�

+
1

4�3/2
+

6⇣(3) + 2
�2

+
18⇣(3) + 361

64

�5/2
+

39⇣(3) + 447
32

�3
+ · · ·

↵O = 1� 8
�1/2

� 4
�

+
13

�3/2
+

96⇣(3) + 41
�2

+
288⇣(3) + 1823

16

�5/2
+

720⇣(5) + 1344⇣(3)� 3585
4

�3
+ · · ·

↵O = 1� 0
�1/2

� 0
�

+
0

�3/2
+

0
�2

+
0

�5/2
+

0
�3

+ · · ·

Brower, Djuric, Tan

Avsar, Hatta, Matsuo



e�(S)2 = ⌧2 + a1(⌧,�)S + a2(⌧,�)S2 + · · ·

POMERON AND ODDERON IN STRONG COUPLING:

B.Basso, 1109.3154v2

POMERON

ODDERON

Solution-a:

Solution-b:

Brower, Polchinski, Strassler, Tan

Costa, Goncalves, Penedones (1209.4355)

Kotikov, Lipatov (1301.0882)

Brower, Costa, Djuric, Raben, Tan (to appear shortly.)

Kotikov, Lipatov, et al.

↵p = 2� 2
�1/2

� 1
�

+
1

4�3/2
+

6⇣(3) + 2
�2

+
18⇣(3) + 361

64

�5/2
+

39⇣(3) + 447
32

�3
+ · · ·

↵O = 1� 8
�1/2

� 4
�

+
13

�3/2
+

96⇣(3) + 41
�2

+
288⇣(3) + 1823

16

�5/2
+

720⇣(5) + 1344⇣(3)� 3585
4

�3
+ · · ·

↵O = 1� 0
�1/2

� 0
�

+
0

�3/2
+

0
�2

+
0

�5/2
+

0
�3

+ · · ·

Gromov et al.

Brower, Djuric, Tan

Avsar, Hatta, Matsuo



e�(S)2 = ⌧2 + a1(⌧,�)S + a2(⌧,�)S2 + · · ·

POMERON AND ODDERON IN STRONG COUPLING:

B.Basso, 1109.3154v2

POMERON

ODDERON

Solution-a:

Solution-b:

Brower, Polchinski, Strassler, Tan

Costa, Goncalves, Penedones (1209.4355)

Kotikov, Lipatov (1301.0882)

Brower, Costa, Djuric, Raben, Tan (to appear shortly.)

Kotikov, Lipatov, et al.

↵p = 2� 2
�1/2

� 1
�

+
1

4�3/2
+

6⇣(3) + 2
�2

+
18⇣(3) + 361

64

�5/2
+

39⇣(3) + 447
32

�3
+ · · ·

↵O = 1� 8
�1/2

� 4
�

+
13

�3/2
+

96⇣(3) + 41
�2

+
288⇣(3) + 1823

16

�5/2
+

720⇣(5) + 1344⇣(3)� 3585
4

�3
+ · · ·

↵O = 1� 0
�1/2

� 0
�

+
0

�3/2
+

0
�2

+
0

�5/2
+

0
�3

+ · · ·

Gromov et al.

Brower, Djuric, Tan

Avsar, Hatta, Matsuo



e�(S)2 = ⌧2 + a1(⌧,�)S + a2(⌧,�)S2 + · · ·

POMERON AND ODDERON IN STRONG COUPLING:

B.Basso, 1109.3154v2

POMERON

ODDERON

Solution-a:

Solution-b:

Brower, Polchinski, Strassler, Tan

Costa, Goncalves, Penedones (1209.4355)

Kotikov, Lipatov (1301.0882)

Brower, Costa, Djuric, Raben, Tan (to appear shortly.)

Kotikov, Lipatov, et al.

↵p = 2� 2
�1/2

� 1
�

+
1

4�3/2
+

6⇣(3) + 2
�2

+
18⇣(3) + 361

64

�5/2
+

39⇣(3) + 447
32

�3
+ · · ·

↵O = 1� 8
�1/2

� 4
�

+
13

�3/2
+

96⇣(3) + 41
�2

+
288⇣(3) + 1823

16

�5/2
+

720⇣(5) + 1344⇣(3)� 3585
4

�3
+ · · ·

↵O = 1� 0
�1/2

� 0
�

+
0

�3/2
+

0
�2

+
0

�5/2
+

0
�3

+ · · ·

Gromov et al.

Brower, Djuric, Tan

Avsar, Hatta, Matsuo



N = 4 Strong vs Weak g2Nc

Graviton

Two 
Gluon 

BFKL  

BPST 
QCD?

j0 = 1
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1

l
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jHt=0L

Odderon-(a)
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F2(x, Q2) � (1/x)�effective)

�eff (Q2)



VII. Summary and Outlook

Provide meaning for Pomeron non-perturbatively from first principles. 

Realization of conformal invariance beyond perturbative QCD 

New starting point for unitarization, saturation, etc. 

First principle description of elastic/total cross sections, DIS at small-x, 
Central Diffractive Glueball production at LHC, etc. 

Inclusive Production and Dimensional Scalings.
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Conformal Invariance as Isometry of AdS

HE scattering after AdS/CFT

G(j, ⇥) =
1

j � j0 + ⇥2/2
⇥

�

⇥ = log(�zz�s/2)

� = sinh�1 �b2 + (z � z⇥)2

2zz⇥

⇥

K(s,⌦b, z, z⇥) =
⇤

dj

2�i

�e�i�j + 1
sin�j

⇥
ej⇥K(j,⌦b, z, z⇥)Longitudinal Boost:

Full Conformal Invariance:

Pomeron as a pole in AdS:

K(s, b, z, z�) ⇥ ej0
� �

sinh �

exp(� �2

⇥⇤ )
⇥3/2

⇥
K(j,⌥b, z, z⇥) � e(2��(j))�

sinh �

�(j) = 2 + 2
�

(j � j0)/�

Conformal Invariance in Transverse AdS3:

K(j,↵b, z, z�) =
⇤

d�

2⇤

� ei�⇥

sinh ⇥

⇥
G(j, �)

Im K(s,�b, z, z�) =
⇤

dj

2⇤i

⇤
d�

2⇤

�ej⇤ei�⇥

sinh ⇥

⇥
G(j, �)



Soft Wall Propagators and Wave Functions

Propagators and Wave functions

In this framework the pomeron propagator obeys:
�@2

z + 10⇤2 + 4⇤4
z

2 � t +
12� ↵2(j)R5

z

2

�
�P(j , z , z

0, t) = �(z � z

0)

The solution to this equation can take several forms. For quantized momentum
transfer tn the solution becomes

�P ⇠ (⇤2
zz

0)↵(j)+1
e

�⇤2(z2+z02)
L

↵
n (2⇤

2
z

2)L↵n (2⇤
2
z

02) (1)

Where as for a continuous t spectrum the solution becomes a combination of
Whittaker’s functions (generalized hyper geometric functions)

�P ⇠ ...M,µ(z<)W,µ(z>) (2)

for  = (t) and µ = µ(j)

Brower, Djuric, TR, Tan (Brown) Holographic DIS 25/3/14 9 / 16

h
� @2

z + ⇤4z2 + (2⇤2 � t) +
↵2(j)� 1/4

z2

i
�P (j, z, z0, t) = �(z � z0)

↵(j) = �(j)� 2

µ(j) = ↵(j)/2(t) = t/4⇤2 � 1/2



Soft Wall Limits

Special Limits, Behavior, and Symmetry

• ⇤ controls the strength of the soft wall and in the limit ⇤ ! 0 one recovers
the conformal solution

Im�conformal
P (t = 0) =

g

2
0

16

r
⇢3

⇡
(zz 0)

e

(1�⇢)⌧

⌧ 1/2
exp

✓
�(Logz � Logz 0)2

⇢⌧

◆
where ⌧ = Log(⇢zz 0s/2) and ⇢ = 2� j0. Note: this has a similar behavior to
the weak coupling BFKL solution where

Im�(p?, p0?, s) ⇠
s

j0

p
⇡DLogs

exp(�(Logp0? � Logp?)2/DLogs)

• If we look at the energy dependence of the pomeron propagator, we can see a
softened behavior in the forward regge limit.

�conformal ⇠ �s

↵0Log�1/2(s) ! �HW ⇠ �s

↵0/Log�3/2(s)

Analytically, this corresponded to the softening of a j-plane singularity from
1/

p
j � j0 !

p
j � j0. Again, we see this same softened behavior in the soft

wall model.

• (Possibly) interesting limit t = 10⇤2. Here the EOM simplifies and takes the
form of a model with 1+1 dimensional conformal symmetry[Fubini]

Brower, Djuric, TR, Tan (Brown) Holographic DIS 25/3/14 10 / 16

sj0�1

sj0�1

p
log s

sj0�1

(log s)3/2

t = 2⇤2



Review of High Energy Scattering in String Theory
DIS in AdS

For two-to-two scattering involving on-shell hadrons, it is convenient to
express the amplitude as

A4(s, t) ' 2s

Z
d

2
be

�ibq?

Z
dzdz

0
P13(z)P24(z

0
) �(s, b, z, z

0
),

where, for scalar glueball states,

P

ij

(z) =

p
�g(z)(z/R)

2
�

i

(z)�

j

(z)

involves a product of two external normalizable wave functions. We have
introduced function �(s, b, z, z

0
), the “eikonal”, where

�(s, b, z, z

0
) =

g

2
0R

4

2(zz

0
)

2
s

K(s, b, z, z

0
)

and K(s, b, z, z

0
) is the BPST Pomeron kernel.

Djurić — DIS after AdS/CFT Introduction 13/21



High Energy Scattering and DIS in String Theory
AdS space continued

I We are interested in calculating the structure function F2(x,Q

2
),

which is simply the cross section for an o↵-shell photon. Using the
optical theorem we obtain

�

tot

' 2

Z
d

2
b

Z
dzdz

0
P13(z)P24(z

0
) Im �(s, b, z, z

0
)

I For DIS, P13 should present a photon on the boundary that couples
to a spin 1 current in the bulk. This current then propagates through
the bulk, and scatters o↵ the target.

I The wave function, in the conformal limit, is

P13(z)! P13(z, Q) =

1

z

(Qz)

4
(K

2
0 (Qz) + K

2
1 (Qz))

I For the proton, one for now treats it as a glueball of mass
⇠ ⇤ = 1/Q

0.

Djurić — DIS after AdS/CFT Introduction 16/21



Numerics Plots

Plots

F2
(x
,Q
)

The structure function F2(x ,Q2) plotted for farious values of Q2. The data points are from the
H1-Zeus collaboration and the solid lines are the soft wall fit values.

Brower, Djuric, TR, Tan (Brown) Holographic DIS 25/3/14 13 / 16



Numerics Plots

Plots Cont.
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107 Contour plots of Im[�] as a function of
1/x vs Q

2 (Gev) for conformal, hard-
wall, and softwall models. These plots
are all in the forward limit, but the
impact parameter representation can
tell us about the onset of non-linear
eikonal e↵ects. The similar behavior for
the softwall implies a similar conclusion
about confinement vs saturation.
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Pomeron in QCD



CFT correlate function – coordinate representation

OPE:

h�1(x1)�2(x2)�3(x3)�4(x4)i

�(x1)�2(x2) '
X

k

C1,2;k(x12, @1)Ok(x1)

Bootstrap:

s-channel OPE = t-channel OPE

O(�,j)k
(x)Dynamics: Conformal Dimension, Spin

unitarity, positivity, locality, analyticity, etc.



HE scattering after AdS/CFT

A(s, b) =
Z

dz

Z
dz0

Z i1

�i1

d�
2⇡i

Z i1

�i1

dj

2⇡
A(�, j, z, z0) es j Y�(L(b,z,z0))

A(�, j, z, z0) = �1(z)�2(z)�3(z0)�4(z0)⇥
1 + e�i⇡j

sin ⇡j
⇥A(�, j)

A(�, j) ⇠ 1
���(j,�)

A(s, b) =
Z

dzdz0 ⇧�i

X

j=0,2,···
�(j) es j Y�(j)(L(z,z0,b))

Anomalous Dimension: �(j,�) ⌘ �(j,�)� j � 2

In the limit �!1, only j = 2 survives.

AdS/CFT:

Dynamics:



HE scattering after AdS/CFT

Dynamics aj(�) ⇠ 1
���j

! 1
���(j)

�(j)$ 4��(j)

Single Trace Gauge Invariant Operators of N = 4 SYM,

Symmetry of Spectral Curve:

Super-gravity in the �!1:

Tr[F 2]$ �, T r[Fµ⇢F⇢⌫ ]$ Gµ⌫ , · · ·

Tr[F 2], T r[Fµ⇢F⇢⌫ ], T r[Fµ⇢D
S
±F⇢⌫ ], T r[Z⌧ ], T r[DS

±Z⌧ ], · · ·



HE scattering after AdS/CFT

aj(�) ⇠ 1
���j

! 1
���(j)

�(j)$ 4��(j)

Single Trace Gauge Invariant Operators of N = 4 SYM,

Symmetry of Spectral Curve:

Super-gravity in the �!1:

Graviton Spectral Curve:

Tr[F±?Dj�2
± F?±], j = 2, 4, · · ·

�(2) = 4; �(j) = O(�1/4)!1, j > 2



�2 = 0

Energy-Momentum Conservation built-in automatically.

ANOMALOUS DIMENSIONS:

�(j) = 2 +
p
2

qp
g2Nc(j � j0)

�n = 2
q

1 +
p

g2N(n� 2)/2� n

�(j,�) = �(j,�)� j � 2


