pp Cross-section Measurements at ATLAS

Michel Trottier-McDonald¹

on behalf of the ATLAS collaboration

¹Lawrence Berkeley National Laboratory

September 2 2015

Outline

- Inelastic σ_{pp} Measurement with MBTS
- Elastic σ_{pp} Measurement with ALFA

Interest in Measuring pp Cross-sections

Predictions from QCD

- Perturbation theory not applicable: predictions provided by models.
- Optical theorem: Relation between elastic-scattering amplitude to total cross-section.

• Cosmic Ray Showers

- Glauber-Gribov model:
 pp ↔ *p* − Air
- Modeling of X_{max}: ID initiating particle using shower depth.

 Determination of average number of simultaenous pp_{inel} interactions at LHC

M. T-McDonald (LBNL)

ATLAS-CONF-2015-038

σ_{pp} Measurements at ATLAS

MBTS (inelastic)

- Measure $\sigma_{pp}^{\text{inel}}$ in fiducial region.
- Extrapolate to total $\sigma_{pp}^{\text{inel}}$ using model
- Measurement at 7 TeV.
- \rightarrow **new!** Preliminary measurement at 13 TeV

ALFA (elastic)

- Measure elastic event rates in fiducial region.
- Correct for acceptance and resolution, obtain $\frac{d\sigma_{pp}^{el}}{dt}$.
- Fit to model (using optical theorem), obtain $\sigma_{pp}^{\text{tot}}, \sigma_{pp}^{\text{el}} \text{ and } \sigma_{pp}^{\text{inel}}.$
- \rightarrow Measurement at 7 TeV.
- Measurement at 8 TeV in the works. 13 TeV • planned.

MBTS 13TeV Measurement

ATLAS-CONF-2015-038

M. T-McDonald (LBNL)

pp cross-section

September 2 2015 4 / 27

MBTS: Detector and Acceptance

- Polystyrene scintillator discs placed on both sides of the interaction point.
- Each disk has 12 counters (8 inner, 4 outer).
- Acceptance $2.07 < |\eta| < 3.86$.
- Completely replaced between 7 TeV and 13 TeV measurements.
- \sim 99% efficient to charged particles.
- ATLAS calorimeter and inner detector also used.
- LUCID: forward luminosity detector, used for special triggering.
- LHCf: study π⁰ multiplicity to understand cosmic ray showers, used for special triggering.

MBTS: Acceptance and $\tilde{\xi}$ Definition

- *M_X*, *M_Y*: invariant masses of the dissociated protons.
- M_X : the largest of the two.
- $\tilde{\xi} = M_X^2/s$: is closely correlated with the largest η of a dissociated system.
- $\label{eq:alpha} \begin{array}{l} \bullet \ \ |\eta| < 3.86 \rightarrow \tilde{\xi} > 1 \times 10^6 \\ (M_X > 13 \ {\rm GeV}). \end{array}$

MBTS: Inelastic Interactions MC Modeling

Types of inelastic proton dissociations in MC generators used

Non-Diffractive (ND) (color-exchange)

- Non-diffractive is dominant (70 ~ 80%).
- Details of diffractive events drive theoretical uncertainties.
- Measurement sensitive to the proportions of these processes.

MBTS: Inelastic Interactions MC Modeling

Double-Dissociation Single-Dissociation Normalized 0.06 0.05 Normalized 0.04 Monash DD DL of=0.35 Monash DD DL e 0.04 ATLAS Simulation Preliminary ATLAS Simulation Preliminary 0.03 0.03 0.02 0.02 0.01 0.01 0 log₁₀(ξ) log_(ξ

- The various MC models considered agree fairly well on the sum of the ND, SD, and DD contributions.
- However, they disagree strongly on how these contributions are distributed.

MBTS: Data

- Using $\int \mathcal{L} = 63 \mu b^{-1}$ of data with ~ 0.003 peak interactions per bunch-crossing.
- Pileup is negligible, no need to correct for overlapping interactions.
- Recorded events have at least 1 hit in the MBTS.
- No full-fledged van der Meer scans available at the time: $\Delta \mathcal{L} \simeq 9\%.$
- The luminosity uncertainty completely dominates the uncertainty on this measurement.

MBTS: Measurement Strategy

$$\sigma(ilde{\xi} > 10^{-6}) = rac{(N - N_{
m BG})}{\epsilon_{
m trig} imes \mathcal{L}} imes rac{1 - f_{ ilde{\xi} < 10^{-6}}}{\epsilon_{
m sel}}$$

$$\begin{split} & \textit{\textit{N}} = \text{Number of events with } \textit{\textit{n}}_{\mathrm{mbts}} \geq 2 \\ & \textit{\textit{N}}_{\mathrm{BG}} = \text{Background estimated with unpaired bunches} \\ & \epsilon_{\mathrm{trig}} = \mathrm{trigger} \text{ efficiency, measured in data wrt offline selection.} \\ & \mathcal{L} = \mathrm{integrated luminosity, calibrated with vdM scan data.} \\ & \epsilon_{\mathrm{sel}} = \mathrm{offline selection efficiency for events with } \tilde{\xi} > 10^{-6}, \text{ from MC.} \\ & \textit{\textit{f}}_{\tilde{\xi} < 10^{-6}} = \mathrm{Migration from outside fiducial region, from MC.} \end{split}$$

Fiducial region definition gives:
$$\mathcal{C}_{MC}\equivrac{1-f_{arepsilon<10^{-6}}}{\epsilon_{
m sel}}pprox 1$$
 .

MBTS: Background and Trigger Efficiency

• Background Estimation

- Trigger on bunches passing through ATLAS without colliding (unpaired).
- Compatible with mostly beam-gas interactions.
- $\bullet~\sim 1\%$ of the inclusive sample.
- Estimate 100% uncertainty interchanging possible background sources.

Population [10¹¹ protons] 0.14 ATLAS Preliminary 0.12 0.1 0.08 0.06 Average Bunch 0.04 Beam 2 Beam 1 (Unpaired) 0.02 Beam 2 (Unpaired) 500 3500 **Bunch Crossing Number**

• Trigger Efficiency

- Estimated w.r.t. triggers from LUCID and LHCf, two highly efficient forward detectors.
- LUCID measures luminosity at ATLAS.
- Efficiency of 99.7% in the inclusive sample.
- Statistical uncertainty of 0.1%.

MBTS: Efficiency to Charged Particles, Material

MBTS Efficiency

- Track-based: tracks reconstructed in $|\eta| < 2.5$, covers outer modules.
- Calo-based: energy deposits reconstructed in full MBTS acceptance, but detect neutrals.
- Neutrals can convert and yield a signal in the MBTS: test material model in front of MBTS.
- The MC simulation is corrected to the efficiency measured in data.
- Effect of variations in efficiency and material negligible.

pp cross-section

MBTS: Constraining the Fraction of Diffractive Events

• Constraining f_D

- The ratio of single-sided events to inclusive events R_{SS} can be measured to constrain $f_D = \frac{\sigma_{SD} + \sigma_{DD}}{\sigma_{pp}^{\text{inel}}}$
- *R_{SS}* is measured to be 10.4 ± 0.5%.
- f_D is adjusted in each model to match the measurement in data (except EPOS LHC & QGSJet).

MBTS: Result in Fiducial Region

- The smaller error bar indicates the uncertainty without \mathcal{L} uncertainty.
- L uncertainty will go from 9% to < 3% with proper calibration (based on Run I experience).
- The measurement is smaller, but compatible with Pythia 8 Donnachie-Landshoff models.

Factor	Value	Rel. unc.
Number of selected events (N)	4159074	-
Number of background events (N_{BG})	43512	$\pm 100 \%$
Luminosity $[\mu b^{-1}](L)$	62.9	±9 %
Trigger efficiency (ϵ_{trig})	99.7%	±0.1 %
MC Correction factor $((1 - f_{\xi < 10^{-6}})/\epsilon_{sel})$	0.993	±0.5 %

MBTS: Extrapolation to Total $\sigma_{pp}^{textinel}$

- Extrapolation factor obtained from MC (Pythia 8 D-L ϵ = 0.085, as in the 7 TeV measurement).
- The uncertainty is taken as the envelope of the extrapolation factors from the different models.
- Compatible with different theoretical models.
- Luminosity and extrapolation from fiducial region dominate the uncertainty.
- Recent vdM scan luminosity calibration will be used to reduce the former.

Source	Value
Source	value
This measurement	73.1 ± 0.9 (exp.) ± 6.6 (lum.) ± 3.8 (extr.) mb
Pythia8	78.4 mb
Kopeliovich et al. [33]	79.8 mb
Menon et al. [34]	81.4 ± 2.0 mb
Khoze et al. [35]	81.6 mb
Gotsman [36]	81.0 mb
Fagundes [37]	77.2 mb

ALFA 7TeV Measurement

CERN-PH-EP-2014-177

M. T-McDonald (LBNL)

pp cross-section

September 2 2015 16 / 27

ALFA: Detector

ALFA: Detector

- Small-angle proton scattering: $|\eta| > 8.5$, scattering angles down to 10 μ rad.
- Main Detectors (MDs): arrays of scintillating fibers in criss-cross pattern at 45°.
- Overlap Detectors (ODs): allow for precise position calibration of MDs.
- ALFA mechanically moved in closer to the beam.
- One trigger plate in front or behind each MD.

ALFA: Measurement Strategy

- 1) Measure $\frac{d\sigma_{pp}^{ep}}{dt}$, where $t = -(p\theta^*)^2$
 - p: scattered proton momentum \simeq beam momentum
 - θ^* : scattering angle
- Made easier with parallel-to-point focusing:
 - $\beta^* = 90$ m, phase advance of 90° at ALFA position
 - particles emitted at the same angle at IP = same position in y at ALFA
- 2) Calculate acceptance vs. t in simulation, used to unfold total $\frac{d\sigma_{pp}^{ei}}{dt}$
- 3) Fit $\frac{d\sigma_{pp}^{\text{el}}}{dt}$ while floating σ_{pp}^{tot} and B (nuclear slope parameter)
- 4) Obtain σ_{pp}^{el} and $\sigma_{pp}^{\text{inel}}$ from fit result.

ALFA: Measurement

- 4 different methods to measure counting rates.
- Subtraction method is the nominal.
- $\beta^* = 90$ m beam optics crucial for t precision.
- Various cuts:
 - Trigger selection
 - Data quality
 - Geometrical acceptance (region of full efficiency)
 - Select back-to-back events (hits in the same arm)
 - Event topology and background rejection

Raw *pp* elastic event counting rates in arm 1 for 3 different measurement methods.

ALFA: Measurement

ALFA: Acceptance & Unfolding

- Simulation used to calculate acceptance unfolding matrix for each arm.
- An unfolding procedure "undoes" bin migration due to resolution effects.

ALFA: Fit to Theory

- Fit theoretical prediction containing:
 - Coulomb term,
 - Coulomb-Nuclear interference term,
 - Dominant nuclear term.
- Fit within range where deviations from exponential behavior are small.
- Fit for σ_{pp}^{tot} and B.

ALFA: Uncertainties

- The fit to theory counts 24 nuisance parameters:
 - Luminosity,
 - Beam energy,
 - Beam optics,
 - Reconstruction efficiency,
 - Acceptance & unfolding corrections,
 - ..
- The dominant uncertainty is on the integrated luminosity at 2.3%.

ALFA: Results

$$\begin{split} B &= 19.73 \pm 0.24 \,\, {\rm GeV^{-2}} \\ \sigma^{\rm tot}_{pp} &= 95.35 \pm 1.20 \,\, {\rm mb} \\ \sigma^{\rm el}_{pp} &= 24.00 \pm 0.19 \,\, ({\rm stat.}) \,\, \pm 0.57 \,\, ({\rm syst.}) \,\, {\rm mb} \\ \sigma^{\rm inel}_{pp} &= 71.34 \pm 0.36 \,\, ({\rm stat.}) \,\, \pm 0.83 \,\, ({\rm syst.}) \,\, {\rm mb} \end{split}$$

M. T-McDonald (LBNL)

pp cross-section

September 2 2015 25 / 27

Summary & Outlook

- MBTS has first *pp*_{inel} cross-section measurement at 13 TeV.
- The measurement will be repeated with new data collected last week, with luminosity fully calibrated with recent vdM scan.

- ALFA has the most precise pp_{el} cross-section measurement at 7 TeV.
- ALFA is finishing their 8 TeV analysis.
- Data-taking is planned this Fall for a 13 TeV measurement.

Backup

M. T-McDonald (LBNL)

pp cross-section

September 2 2015 27 / 27