Discussion session V: heavy ions (1)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Low-x Meeting 2015

Sandomierz, Poland

Single inclusive hadron production in pA scattering

9 "*k*_T-factorized" approach : Kovchegov & Tuchin

- Both the projectile and the target are at very small-x (very high energy)⇒ Color Glass Condensate (CGC) is applicable to both!
- **2 "Hybrid" formalism** : Dumitru, Hayashigaki & Jalilian-Marian
 - The wave function of the projectile proton is treated in the spirit of collinear factorization (an assembly of patrons with zero intrinsic transverse momenta)
 - Perturbative corrections to this wave function are provided by the usual QCD perturbative splitting processes.
 - Target is treated as distribution of strong color fields which during the scattering event transfer transverse momentum to the propagating partonic configuration. (CGC like treatment)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Particle Production at NLO within "Hybrid" formalism

T. Altinoluk, A. Kovner - 2011 (Part of the NLO terms) G.A. Chirilli, B.W. Xiao, F. Yuan - 2012 (Full NLO calculation) A.M.Stasto, B.W.Xiao, D. Zaslavsky, - 2013 (Numerical Analysis at NLO)

Comparison of BRAHMS (h^-) and STAR (π^0) yields in dAu collisions to results of the numerical calculation with rcBK gluon distribution, both at LO and with NLO corrections included.

Revisiting the problem

T. Altinoluk, N. Armesto, G. Beuf, A. Kovner, M. Lublinsky - 2014 (Improved NLO calculation)

(1) What scatters? The loffe Time Restriction

The loffe Time Restriction provides a consistent description on what will be resolved by the target and what not!

- Only the pairs whose coherence time (loffe time) is greater than the propagation time through the target can be resolved by the target!
- loffe time is related with the size of the target at initial energy s_0 .

(2) The rapidity to which eikonal scattering amplitudes have to be evolved?

$$Y_T$$
 vs Y_g

•
$$Y_g = \ln \frac{1}{x_g} \& x_g = e^{-\eta} \frac{p_\perp}{\sqrt{2s}}$$

for a dense target projectile parton undergoes multiple scattering. the momentum transfer p^- is not from a single gluon but from several. x_g is an upper bound on the momentum fraction of the target gluon $\Rightarrow Y_g$ gives a lower bound on the rapidity up to which the target wave function has to be evolved!

・ロト・日本・モート モー うへの

•
$$Y_T = \ln \frac{s}{s_0} \checkmark$$

Revisiting the problem

K. Watanabe, B.W. Xiao, F. Yuan, D. Zaslavsky - 2015 (Numerical results for improved NLO)

Revisiting the problem

K. Watanabe, B.W. Xiao, F. Yuan, D. Zaslavsky - 2015 (Numerical results for improved NLO)

FIG. 6. Comparison of ATLAS forward-rapidity data [21] with the center-of-mass energy of $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ at y = 1.75 with SOLO results for the GBW and reBK models. Again, the color scheme is the same as in figure 4. Here the error band shows plots for $\mu^2 = 10 \text{ GeV}^2$ and $\mu^2 = 100 \text{ GeV}^2$. Since the numerical data for these measurements are not published, we have extracted the ATLAS points from Fig. 6 of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.

イロト イポト イヨト イヨト

æ

Discussion session V: heavy ions (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Low-x Meeting 2015

Sandomierz, Poland

Centrality dependence of R_{pA}

R_{pPb} for Inclusive Jets at LHC [ATLAS, Phys.Lett. B748 (2015) 392-413]

Centrality dependence of R_{pA}

R_{pPb} for Inclusive Jets at LHC [ATLAS, Phys.Lett. B748 (2015) 392-413]

Centrality dependence of R_{pA}

Some explanations:

- suppression of soft emissions when an energetic jet is present [A. Bzdak, V. Skokov, S. Bathe; arXiv:1408.3156]
- reduction of an effective size (and thus the interaction cross section) of a configuration which contains large-*x* parton
 [M. Alvioli, B.A. Cole, L. Frankfurt, D.V. Perepelitsa, M. Strikman; arXiv:1409.7381]
- energy losses
 - [Z-B Kang, I. Vitev, H. Xing; arXiv:1507.05987]
 - [N. Armesto, D. Can Gülhan, J. G. Milhano; Phys.Lett. B747 (2015) 441-445]