# Production Activities and Results by ALICE





Patricia Méndez Lorenzo (on behalf of the ALICE Collaboration)



Service Challenge Technical Meeting CERN, 15<sup>th</sup> September 2006





## **Outline**



- > PDC'06/SC4 goals and tasks
- > 1st Phase: Principles of operation and results
- > 2<sup>nd</sup> Phase: Principles of operation and results
- Conclusions and Plans





## Main tasks of the ALICE Physics Data Challenge 2006 (PDC'06)



- Validation of the LCG/gLite workload management services
  - □Stability of the services is fundamental for the entire duration of the exercise
- Validation of the data transfer and storage services
  - □2<sup>nd</sup> phase of the PDC'06 (*currently fundamental part*)
  - □ The stability and support of the services have to be assured beyond the throughput tests
- Validation of the ALICE distributed reconstruction and calibration model
- ➤ Integration of all Grid resources within one single interfaces to different Grids (LCG, OSG, NDGF)
- End-user data analysis





## PDC'06 Phases



- > First phase (ongoing):
  - □ Production of p+p and Pb+Pb MC events
  - □Conditions and samples agreed with PWGs
  - □Data migrated from all Tiers to CASTOR@CERN
- ➤ Second phase:
  - □Scheduled data transfers T0-T1
  - □Reconstruction of RAW data: 1<sup>st</sup> pass reconstruction at CERN, 2<sup>nd</sup> pass at T1
  - □Scheduled data transfers T2- (supporting)T1
- ➤ Third phase (end of the year)
  - ☐ End-user analysis on the GRID





## **Principles of Operation: VO-box**



- VO-boxes deployed at all T0-T1-T2 sites providing resources for ALICE
  - ☐ Mandatory requirement to enter the production
  - ☐ Required in addition to all standard LCG Services
  - ☐ Entry door to the LCG Environment
  - ☐ Runs standard LCG components and ALICE specific ones
- Uniform deployment
  - ☐ Same behaviour for T1 and T2 in terms of production
  - ☐ Differences between T1 and T2 a matter of QoS only.
- Installation and maintenance entirely ALICE responsibility
  - ☐ Based on a regional principle
  - ☐ Set of ALICE experts matched to groups of sites
- Site related problems handled by site administrators
- LCG Service problems reported via GGUS
  - ☐ Not too much, ALICE has delivered experts in almost all sites





#### **General Services Status**



- > For production ALICE requires (beyond VO-BOXES), dedicated ALICE queues and if existing access to the local RB
  - ☐ Good respond of sites, good level of performance
  - ☐ Established a quite well define system of SW installation/running/monitoring/support
  - ☐ Important number of T2 sites joining (almost) continuously the production
  - ☐ However production unstable in some sites
    - o Competition with other VOs
    - o Local RB problems
    - o Problems at the site (i.e space in local disk for each job, etc)
    - o The experts team is able to find and recover the problem in a relative short time





## **ALICE** in the World









## Results for the PDC'06



## ➤ Continuous running from April 2006







## Results of the PDC'06 (2)



- Gradual inclusion of sites in the ALICE Grid current status:
  - □6 T1s: CCIN2P3, CERN, CNAF, GridKA, NIKHEF, RAL
  - □30 T2s
- ➤ Currently available CPU power 2000 CPUs for ALICE (expected ~4000)
  - □Competing for resources with the other LHC experiments
  - □Computing centres are waiting for the last moment to buy hardware will get more for the same price
  - □ Expect additional resources from Nordic countries and from US (LBL and LLNL)





#### **Resources Statistics**



- > Resources contribution (normalized Si2K units): 50% from T1s, 50% from T2s
  - ☐ The role of the T2 remains very high!







## 2nd Part of PDC'06



- > T0-T1 transfers: Methodology and Status
  - Next Part of the talk
- > Asynchronous to the Production (1st phase)
  - □Combining the production with this exercise





## **Principle of Operations: FTS and LFC**



- > FTS Service deployed at all sites
  - ☐ Used for scheduled replication of data between computing centers
  - □Lower level tool that underlies the data placement
  - ☐ Used as plug-in in the AliEn File Transfer Daemon (FTD)
    - o FTS has been implemented through the FTS Perl APIs
    - o FTD running in the VO-box as one of the ALICE services
- > LFC required at all sites
  - ☐ Used as a local catalogue for the site
- > Access to the SRM SE at all sites also required





## **File Replication**









## FTS Tests: Strategy



- > The main goal is to test the stability of FTS as service and integration with FTD
  - ☐ T0-T1 (disk to tape): 7 days required of sustained transfer rates to all T1s
    - o Exercise still continuing
  - ☐ T1-T2 (disk to disk) and T1-T1 (disk to disk): 2 days required of sustained transfers to T2
    - o STILL TO BE FULLY PERFORMED
- Data types
  - ☐ T0-T1: Migration of raw and 1<sup>st</sup> pass reconstructed data
  - ☐ T1-T2 and T2-T1: Transfers of ESDs, AODs (T1-T2) and T2 MC production for custodial storage (T2-T1)
  - ☐ T1-T1: Replication of ESDs and AODs





#### FTS: Transfer Rates



- >T0-T1: disk-tape transfers at an aggregate rate of 300MB/s from CERN
  - □ Distributed according the MSS resources pledged by the sites in the LCG MoU:
    - o CNAF: 20%
    - o CCIN2P3: 20%
    - o GridKA: 20%
    - o SARA: 10%
    - o RAL: 10%
    - o US (one center): 20%
- >T1-T2: Following the T1-T2 relation matrix
  - ☐ Test of the services performance, no specific target for transfer rates





## **FTS Tests Remarks**



- The FTS transfers will not be synchronous with the data production
- > The sites should provide mechanism for garbage collector
- > Transfers based on LFN is not required
- The automatic update of the LFC catalogue is not required
  - ☐ ALICE will take care of the catalogues update
- Summary of requirements:
  - □ ALICE FTS Endpoints at the T0 and T1
  - ☐ SRM-enabled storage with automatic data deletion if needed
  - ☐ FTS service at all sites
  - Support during the whole tests (and beyond)





#### **Monitor Tools**



- > We are controlling the status of the transfers with different tools
  - ☐ MonaLisa controls all FTD status
  - □ Dashboard follows the FTS errors
  - ☐ The status of the transfers are fully monitored also in the VO-BOXES through the FTD logs
- > All problems have been reported inmediatly using GGUS
- ➤ Good support of the SC Experts





### **Data Movement: MonaLisa**









#### **Data Movement: DashBoard**









## **Status of FTS Transfers**



- > These are the problems we are facing at this moment
  - ☐ Problems with Castor at the origin (CERN) and the destination (CNAF)
  - ☐ FTS server at CERN hanging
  - ☐ Problems with the access to the catalogue in all sites
    - o Setcomment API may be having problems
  - ☐ Certain instabilities found in the VOBOXES
    - o CERN (substituted by a new VOBOX) and SARA
  - ☐ Recovering now the transfers
- > From the ALICE site
  - ☐ Increase the size of the transferred files
    - o Done
  - ☐ Increase the number of simultaneous transfers per site
    - o Done, increased to 100 simultaneous transfers to all sites





## **After ALICE actions**









#### **Proposed ALICE T1-T2 Connections**



- > CCIN2P3
  - ☐ French T2s, Sejong (Korea), Lyon T2, Madrid (Spain)
- > CFRN
  - ☐ Cape Town (South Africa), Kolkatta (India), T2 Federation (Romania), RMKI (Hungary), Athens (Greece), Slovakia, T2 Federation (Poland), Wuhan (China)
- > FZK
  - ☐ FZU (Czech Republic), RDIG (Russia), GSI and Muenster (Germany)
- > CNAF
  - ☐ ItalianT2s
- > RAL
  - Birmingham
- SARA/NIKHEF
- > NDGF
- > PDSF
  - Houston

- a) Still to be decided if this proposal is approved
- b) Status of FTS services at T2 to be checked
- c) ALICE T2 sites aware of the requirements





## **Conclusions**



- ➤ The ALICE PDC`06
  - □ Complete test of the ALICE computing model and Grid services readiness for data taking in 2007
  - □ Production of data ongoing, integration of LCG and ALICE specific services through the VO-box framework progressing extremely well
  - Building of support infrastructure and relations with ALICE sites is on track
- > The 2nd Phase of PDC'06 is a fundamental issue
  - Stability
  - ☐ Efficiency in the tickets response
  - ☐ Still to establish certain strategy points for the T1-T2 transfers
- ➤ The 3rd phase (end-user analysis) at the end of the year





#### Plans for Next Year



- > Continue with MC production for physics performance and detector studies
  - ☐ List of events/conditions from ALICE PWGs is growing
- > Continue the tests of the storage facilities at the sites and file replication of RAW data (CERN>>T1) and ESD/AOD (T1<<>>T2) through the FTS service
- > Continue and improve the user analysis of the Grid (starting October 2006) and the CAF
- > Include all detectors commisioning exercises and test data
- Continue the build-up of ALICE related experts support at the computing centers providing ALICE resources