

Facility for Rare Isotope Beam (FRIB) PLC Control Systems Introduction

Kelly Davidson
Controls Department Deputy Manager

Outline

- FRIB project introduced
- PLC scope and application defined
- PLC Architecture defined
- Control Engineering Process defined
- Management of change workflow defined

FRIB Introduction

- The FRIB, is a new heavy ion accelerator facility currently under construction at Michigan State University
 - Replaces existing coupled cyclotrons in the National Superconducting Cyclotron Lab
- It is being built to provide intense beams of rare isotopes
- Funded by DOE–SC Office of Nuclear Physics with contributions and cost share from Michigan State University

- Serving over 1,400 users
- Key feature is 400 kW beam power for all ions, from H to ²³⁸U with energies of no less than 200 MeV/u
- Provides separation of rare isotopes in-flight
 - Supplying fast, stopped, and reaccelerated beams to experimenters
- Scheduled completion, 2022

FRIB Low Level Controls Scope and Application

FRIB PLC Architecture Defined [1]

- Allen Bradley (AB) ControlLogix PLC
 - Large installed base in local industry
 - Already deployed and established as standard for NSCL projects since 2004
 - Used at several other National labs
 - Existing in-house expertise
 - Excellent local support from manufacturer
- Provides the direct interface to the process devices via modular I/O
 - Interfaces with discrete logic signals via 24 VDC
 - Interfaces with analog signals via 4..20 mA current loops or +/- 10 VDC
 - Other signaling levels can be translated through appropriate signal conditioning
- Remote I/O
 - Ethernet connected chassis house I/O modules for host controllers
 - Use of off-chassis I/O transparent to the programmer
 - Programmable failure modes for loss-ofcommunication faults
- Use AB AssetCentre for version control
 - Nightly compares verifies no unauthorized changes

- Baseline I/O Modules
 - Analog Input 1756-IF16
 - Analog Output 1756-OF8
 - Digital Input 1756-IB16IF
 - Digital Output 1756-OB16IEF
 - RTD Input 1756-IRT8I
- Using High Speed Digital I/O modules
 - Lower Cost than diagnostic modules
 - Modules can place timestamps on data
 - Ability for higher speed reaction to inputs with bypassing CPU ($<=150~\mu$ S, Tested at 40-60 μ S)

PLC Architecture Defined [2]

- Interface Modules (IFMs) will be used as the connection point between the 1756 ControlLogix PLC Input and Output modules and signals from devices in the field
 - Designed to interface with specific Allen Bradley I/O modules and pre-wired terminal blocks
 - » Reduces cabinet installation time from ~40 hours to 10 hours
 - » Reduces wiring errors
 - » Reduces cost vs commercial option
 - » Provides 24 V or Com for every signal (Module Type Dependent)
 - » Provides extra 24 V, Com Connections
 - One module for each IO type
 - » Analog Input
 - » Analog Output
 - » Digital Input
 - » Digital Output
 - Uniform design across PLC systems for simplified spare inventory
 - Uses commercial pre-wired cables from I/O module to terminal blocks

FRIB Controls Engineering Workflow, SOP

User manual

report

Test and Verification

Gate Review report

(ready for production?)

Hardware and big project will have longer Initiation/Elaboration phases.
Software (quick evolving) project will have short first two phases to form a baseline.
ECO process covered by FRIB Document

Living document

Engineering Document

Q/A document

Gate review

Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science
Michigan State University

Controls Engineering Deliverables

- Final designs include:
 - Interface, requirements, design description documents
 - Signal lists, interlock, and testing validation documents, support manual
 - Unique schematics

FRIB Cryoplant Controls Design

FRIB Cryogenic Distribution Controls

Design Description

FRIB Work Control Procedures

- Work control procedures for control changes are documented
 - Changes are to follow both software configuration management plan, or Engineering Change order process, FRIB/NSCL PLC Change Control Procedure and work control plan
 - Communication with System Owner defined and required
 - » Role of System Owner defined
 - » Area Manager identifies System Owner for the work
 - » Discussion on the risk with System Owner required
 - » Ownership handover procedure with System Owner defined
 - Peer review required before installation
 - Adequate validation after the work
- Developing online change control request system to get system/area managers approval ahead of work planning
- Access restrictions at various level are in place
 - Physical access granted only to those with appropriate site training
 - Work after hours/weekends on FRIB site must be pre-approved
 - Access to FRIB Controls and Test Network limited to personnel with business need and appropriate qualifications
 - Access to PLC and GIT repositories are also restricted to appropriate personnel

Summary

- PLCs have a large scope and application within FRIB
- PLC Architecture has been determined, made use of time saving designs and has been a very stable platform
- Control Engineering Process defined
- Management of change workflow is defined and undergoing improvements

Backup Slides

